BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37484628)

  • 1. Development of a Digital Twin for the Prediction and Control of Supersaturation during Batch Cooling Crystallization.
    Leeming R; Mahmud T; Roberts KJ; George N; Webb J; Simone E; Brown CJ
    Ind Eng Chem Res; 2023 Jul; 62(28):11067-11081. PubMed ID: 37484628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process intensification of atorvastatin calcium crystallization for target polymorph development via continuous combined cooling and antisolvent crystallization using an oscillatory baffled crystallizer.
    Kshirsagar S; Lakshmi Ramana Susarla N; Ramakrishnan S; Nagy ZK
    Int J Pharm; 2022 Nov; 627():122172. PubMed ID: 36084877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing pharmaceutical crystallization in a flow crystallizer with ultrasound: Anti-solvent crystallization.
    Hussain MN; Jordens J; John JJ; Braeken L; Van Gerven T
    Ultrason Sonochem; 2019 Dec; 59():104743. PubMed ID: 31479884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient crystallization process of dodecanedioic acid by a pneumatically agitated crystallizer.
    Duan J; Chen L; Hong R; Li Y; Huang J
    Prep Biochem Biotechnol; 2023; 53(8):1004-1011. PubMed ID: 36651905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein purification by bulk crystallization: the recovery of ovalbumin.
    Judge RA; Johns MR; White ET
    Biotechnol Bioeng; 1995 Nov; 48(4):316-23. PubMed ID: 18623492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing regions of attainable sizes and achieving target size distribution in a batch cooling sonocrystallization process.
    Bhoi S; Sarkar D
    Ultrason Sonochem; 2018 Apr; 42():162-170. PubMed ID: 29429657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Nucleation and Crystallization Process with Process Analytical Technologies in a Batch Crystallizer.
    Tian W; Li W; Yang H
    Cryst Growth Des; 2023 Jul; 23(7):5181-5193. PubMed ID: 37426550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive control of crystal size distribution in protein crystallization.
    Shi D; Mhaskar P; El-Farra NH; Christofides PD
    Nanotechnology; 2005 Jul; 16(7):S562-74. PubMed ID: 21727478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New perspectives for the on-line monitoring of pharmaceutical crystallization processes using in situ infrared spectroscopy.
    Févotte G
    Int J Pharm; 2002 Jul; 241(2):263-78. PubMed ID: 12100854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal Engineering in Continuous Plug-Flow Crystallizers.
    Besenhard MO; Neugebauer P; Scheibelhofer O; Khinast JG
    Cryst Growth Des; 2017 Dec; 17(12):6432-6444. PubMed ID: 29234240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of feedback control and in situ milling to improve particle size and shape in the crystallization of a slow growing needle-like active pharmaceutical ingredient.
    Yang Y; Pal K; Koswara A; Sun Q; Zhang Y; Quon J; McKeown R; Goss C; Nagy ZK
    Int J Pharm; 2017 Nov; 533(1):49-61. PubMed ID: 28935256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics simulation of a jet crystallizer for continuous crystallization of lovastatin.
    Zarei M; Norouzi HR; Sahlodin AM
    Sci Rep; 2024 Jan; 14(1):907. PubMed ID: 38195824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quartz Crystal Microbalance Technique for in Situ Analysis of Supersaturation in Cooling Crystallization.
    Liu LS; Kim JM; Kim WS
    Anal Chem; 2016 Jun; 88(11):5718-24. PubMed ID: 27161190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-flow, well-mixed, microfluidic crystallization device for screening of polymorphs, morphology, and crystallization kinetics at controlled supersaturation.
    Coliaie P; Kelkar MS; Nere NK; Singh MR
    Lab Chip; 2019 Jul; 19(14):2373-2382. PubMed ID: 31222193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Operation of an Oscillatory Flow Crystallizer: Coupling Disturbance and Stability.
    Lian SJ; Hu ZX; Lan Z; Wen RF; Ma XH
    ACS Omega; 2021 Nov; 6(43):28912-28922. PubMed ID: 34746583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Crystallization of Proteins in a Tubular Plug-Flow Crystallizer.
    Neugebauer P; Khinast JG
    Cryst Growth Des; 2015 Mar; 15(3):1089-1095. PubMed ID: 25774098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and Transformation Behavior of Sodium Dehydroacetate Hydrates.
    Zhang X; Xie C; Huang Y; Hou B; Bao Y; Gong J; Yin Q; Rohani S
    Molecules; 2016 Apr; 21(4):458. PubMed ID: 27058518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the Batch Size of a QESD Crystallization by Using a MSMPR Crystallizer.
    Hansen J; Kleinebudde P
    Pharmaceutics; 2022 Jun; 14(6):. PubMed ID: 35745799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Driven, Sensor-Integrated Microfluidic Device for Monitoring and Control of Supersaturation for Automated Screening of Crystalline Materials.
    Coliaie P; Prajapati A; Ali R; Korde A; Kelkar MS; Nere NK; Singh MR
    ACS Sens; 2022 Mar; 7(3):797-805. PubMed ID: 35045697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ observation on the dynamic process of evaporation and crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR.
    Zhang QN; Zhang Y; Cai C; Guo YC; Reid JP; Zhang YH
    J Phys Chem A; 2014 Apr; 118(15):2728-37. PubMed ID: 24666279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.