BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37484974)

  • 1. Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation.
    González-Sierra NE; Perez-Corte JM; Padilla-Martinez JP; Cruz-Vanegas S; Bonfadini S; Storti F; Criante L; Ramos-García R
    J Biomed Opt; 2023 Jul; 28(7):075004. PubMed ID: 37484974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed needleless injector based on thermocavitation: analysis of impact and penetration depth in skin phantoms in a repetitive regime.
    Zaca-Morán R; Mitre-Martínez DG; Castillo-Mixcóalt J; Zaca-Morán P; Ramos-García R; Ramírez-San-Juan JC; Morán-Raya C; Padilla-Martínez JP
    Drug Deliv Transl Res; 2024 Jun; ():. PubMed ID: 38831200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward jet injection by continuous-wave laser cavitation.
    Berrospe-Rodriguez C; Visser CW; Schlautmann S; Rivas DF; Ramos-Garcia R
    J Biomed Opt; 2017 Oct; 22(10):1-9. PubMed ID: 29030942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave laser generated jets for needle free applications.
    Berrospe-Rodriguez C; Visser CW; Schlautmann S; Ramos-Garcia R; Fernandez Rivas D
    Biomicrofluidics; 2016 Jan; 10(1):014104. PubMed ID: 26858816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery Strategies for Skin: Comparison of Nanoliter Jets, Needles and Topical Solutions.
    Cu K; Bansal R; Mitragotri S; Fernandez Rivas D
    Ann Biomed Eng; 2020 Jul; 48(7):2028-2039. PubMed ID: 31617044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jet injectors: Perspectives for small volume delivery with lasers.
    Schoppink J; Fernandez Rivas D
    Adv Drug Deliv Rev; 2022 Mar; 182():114109. PubMed ID: 34998902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental study of acoustic waves generated by thermocavitation and its application in the generation of liquid jets.
    Zaca-Morán R; Castillo-Mixcóatl J; Sierra-González NE; Pérez-Corte JM; Zaca-Morán P; Ramírez-San-Juan JC; Ramos-García R; Padilla-Martínez JP
    Opt Express; 2020 Feb; 28(4):4928-4937. PubMed ID: 32121723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of needle-assisted jet injections.
    Li X; Ruddy B; Taberner A
    J Control Release; 2016 Dec; 243():195-203. PubMed ID: 27746273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable direction of liquid jets generated by thermocavitation within a droplet.
    Padilla-Martinez JP; Ramirez-San-Juan JC; Berrospe-Rodriguez C; Korneev N; Aguilar G; Zaca-Moran P; Ramos-Garcia R
    Appl Opt; 2017 Sep; 56(25):7167-7173. PubMed ID: 29047977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large volume subcutaneous delivery using multi-orifice jet injection.
    McKeage JW; Tan AZH; Taberner AJ
    Int J Pharm; 2024 Jan; 649():123605. PubMed ID: 37981248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotatable Orifice for Needle-Free Jet Injection.
    Tan AZH; Taberner AJ; McKeage JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of jet shape on jet injection.
    Park G; Modak A; Hogan NC; Hunter IW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7350-3. PubMed ID: 26737989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of laser induced jets in needle free jet injections.
    Rohilla P; Marston J
    Int J Pharm; 2020 Nov; 589():119714. PubMed ID: 32822782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transdermal drug delivery by jet injectors: energetics of jet formation and penetration.
    Schramm J; Mitragotri S
    Pharm Res; 2002 Nov; 19(11):1673-9. PubMed ID: 12458673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Needle-free delivery of fluids from compact laser-based jet injector.
    Krizek J; De Goumoëns F; Delrot P; Moser C
    Lab Chip; 2020 Oct; 20(20):3784-3791. PubMed ID: 32902554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of geometrical parameters on the fluid dynamics of air-powered needle-free jet injectors.
    Mohizin A; Kim JK
    Comput Biol Med; 2020 Mar; 118():103642. PubMed ID: 32174321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ampoule and nozzle development for needle-free injections.
    Liu J; Hogan NC; Hunter I
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():304-308. PubMed ID: 29059871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental application of pulsed Ho:YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device.
    Ohki T; Nakagawa A; Hirano T; Hashimoto T; Menezes V; Jokura H; Uenohara H; Sato Y; Saito T; Shirane R; Tominaga T; Takayama K
    Lasers Surg Med; 2004; 34(3):227-34. PubMed ID: 15022249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic behavior of a spring-powered micronozzle needle-free injector.
    Schoubben A; Cavicchi A; Barberini L; Faraon A; Berti M; Ricci M; Blasi P; Postrioti L
    Int J Pharm; 2015 Aug; 491(1-2):91-8. PubMed ID: 26027490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations of needle-free jet injections.
    Schramm-Baxter JR; Mitragotri S
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3543-6. PubMed ID: 17271055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.