These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 37485422)
1. circRNA-sponging: a pipeline for extensive analysis of circRNA expression and their role in miRNA sponging. Hoffmann M; Schwartz L; Ciora OA; Trummer N; Willruth LL; Jankowski J; Lee HK; Baumbach J; Furth PA; Hennighausen L; List M Bioinform Adv; 2023; 3(1):vbad093. PubMed ID: 37485422 [TBL] [Abstract][Full Text] [Related]
2. circRNA-sponging: a pipeline for extensive analysis of circRNA expression and their role in miRNA sponging. Hoffmann M; Schwartz L; Ciora OA; Trummer N; Willruth LL; Jankowski J; Lee HK; Baumbach J; Furth P; Hennighausen L; List M bioRxiv; 2023 Jun; ():. PubMed ID: 36789427 [TBL] [Abstract][Full Text] [Related]
3. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs. Chen L; Wang F; Bruggeman EC; Li C; Yao B Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611 [TBL] [Abstract][Full Text] [Related]
4. Integrated analysis of microRNAs, circular RNAs, long non-coding RNAs, and mRNAs revealed competing endogenous RNA networks involved in brown adipose tissue whitening in rabbits. Du K; Bai X; Chen L; Shi Y; Wang HD; Cai MC; Sun WQ; Wang J; Chen SY; Jia XB; Lai SJ BMC Genomics; 2022 Nov; 23(1):779. PubMed ID: 36443655 [TBL] [Abstract][Full Text] [Related]
5. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. Xu T; Wu J; Han P; Zhao Z; Song X BMC Genomics; 2017 Oct; 18(Suppl 6):680. PubMed ID: 28984197 [TBL] [Abstract][Full Text] [Related]
6. Crosstalk in competing endogenous RNA networks reveals new circular RNAs involved in the pathogenesis of early HIV infection. Zhang Y; Zhang H; An M; Zhao B; Ding H; Zhang Z; He Y; Shang H; Han X J Transl Med; 2018 Nov; 16(1):332. PubMed ID: 30486834 [TBL] [Abstract][Full Text] [Related]
8. nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs. Digby B; Finn SP; Ó Broin P BMC Bioinformatics; 2023 Jan; 24(1):27. PubMed ID: 36694127 [TBL] [Abstract][Full Text] [Related]
9. Circular RNAs Act as miRNA Sponges. Panda AC Adv Exp Med Biol; 2018; 1087():67-79. PubMed ID: 30259358 [TBL] [Abstract][Full Text] [Related]
10. Merkel Cell Polyomavirus Encodes Circular RNAs (circRNAs) Enabling a Dynamic circRNA/microRNA/mRNA Regulatory Network. Abere B; Zhou H; Li J; Cao S; Toptan T; Grundhoff A; Fischer N; Moore PS; Chang Y mBio; 2020 Dec; 11(6):. PubMed ID: 33323517 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of circular RNAs in the silkworm midgut following Bombyx mori cytoplasmic polyhedrosis virus infection. Hu X; Zhu M; Zhang X; Liu B; Liang Z; Huang L; Xu J; Yu L; Li K; Zar MS; Xue R; Cao G; Gong C RNA Biol; 2018 Feb; 15(2):292-301. PubMed ID: 29268657 [TBL] [Abstract][Full Text] [Related]
12. Identification of Abundant and Evolutionarily Conserved Opioid Receptor Circular RNAs in the Nervous System Modulated by Morphine. Irie T; Shum R; Deni I; Hunkele A; Le Rouzic V; Xu J; Wilson R; Fischer GW; Pasternak GW; Pan YX Mol Pharmacol; 2019 Aug; 96(2):247-258. PubMed ID: 31243060 [TBL] [Abstract][Full Text] [Related]
13. CircRNA and miRNA expression profiles during remote ischemic postconditioning attenuate brain ischemia/reperfusion injury. Li CY; Ma W; Liu KP; Yang JW; Wang XB; Wu Z; Zhang T; Wang JW; Liu W; Liu J; Liang Y; Zhang XK; Li JJ; Guo JH; Li LY Brain Res Bull; 2022 Jul; 185():39-48. PubMed ID: 35452749 [TBL] [Abstract][Full Text] [Related]
14. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning. Kouhsar M; Kashaninia E; Mardani B; Rabiee HR BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785 [TBL] [Abstract][Full Text] [Related]
15. Identification of Serum Exosome-Derived circRNA-miRNA-TF-mRNA Regulatory Network in Postmenopausal Osteoporosis Using Bioinformatics Analysis and Validation in Peripheral Blood-Derived Mononuclear Cells. Dong Q; Han Z; Tian L Front Endocrinol (Lausanne); 2022; 13():899503. PubMed ID: 35757392 [TBL] [Abstract][Full Text] [Related]
16. The circRNA-miRNA/RBP regulatory network in myocardial infarction. Zhang L; Zhang Y; Yu F; Li X; Gao H; Li P Front Pharmacol; 2022; 13():941123. PubMed ID: 35924059 [TBL] [Abstract][Full Text] [Related]
17. CircMiMi: a stand-alone software for constructing circular RNA-microRNA-mRNA interactions across species. Chiang TW; Mai TL; Chuang TJ BMC Bioinformatics; 2022 May; 23(1):164. PubMed ID: 35524165 [TBL] [Abstract][Full Text] [Related]
18. FUCHS-towards full circular RNA characterization using RNAseq. Metge F; Czaja-Hasse LF; Reinhardt R; Dieterich C PeerJ; 2017; 5():e2934. PubMed ID: 28265491 [TBL] [Abstract][Full Text] [Related]
19. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Liu YC; Li JR; Sun CH; Andrews E; Chao RF; Lin FM; Weng SL; Hsu SD; Huang CC; Cheng C; Liu CC; Huang HD Nucleic Acids Res; 2016 Jan; 44(D1):D209-15. PubMed ID: 26450965 [TBL] [Abstract][Full Text] [Related]
20. Identification of Functional CircRNA-miRNA-mRNA Regulatory Network in Dorsolateral Prefrontal Cortex Neurons of Patients With Cocaine Use Disorder. Chen Y; Li X; Meng S; Huang S; Chang S; Shi J Front Mol Neurosci; 2022; 15():839233. PubMed ID: 35493321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]