These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 37485738)
1. Consistency across multi-omics layers in a drug-perturbed gut microbial community. Wuyts S; Alves R; Zimmermann-Kogadeeva M; Nishijima S; Blasche S; Driessen M; Geyer PE; Hercog R; Kartal E; Maier L; Müller JB; Garcia Santamarina S; Schmidt TSB; Sevin DC; Telzerow A; Treit PV; Wenzel T; Typas A; Patil KR; Mann M; Kuhn M; Bork P Mol Syst Biol; 2023 Sep; 19(9):e11525. PubMed ID: 37485738 [TBL] [Abstract][Full Text] [Related]
2. gNOMO2: a comprehensive and modular pipeline for integrated multi-omics analyses of microbiomes. Arikan M; Muth T Gigascience; 2024 Jan; 13():. PubMed ID: 38995144 [TBL] [Abstract][Full Text] [Related]
3. Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota. Wang Y; Zhou Y; Xiao X; Zheng J; Zhou H J Proteomics; 2020 May; 219():103737. PubMed ID: 32198072 [TBL] [Abstract][Full Text] [Related]
4. The need for an integrated multi-OMICs approach in microbiome science in the food system. Ferrocino I; Rantsiou K; McClure R; Kostic T; de Souza RSC; Lange L; FitzGerald J; Kriaa A; Cotter P; Maguin E; Schelkle B; Schloter M; Berg G; Sessitsch A; Cocolin L; Compr Rev Food Sci Food Saf; 2023 Mar; 22(2):1082-1103. PubMed ID: 36636774 [TBL] [Abstract][Full Text] [Related]
5. MetaComp: comprehensive analysis software for comparative meta-omics including comparative metagenomics. Zhai P; Yang L; Guo X; Wang Z; Guo J; Wang X; Zhu H BMC Bioinformatics; 2017 Oct; 18(1):434. PubMed ID: 28969605 [TBL] [Abstract][Full Text] [Related]
6. Omics technologies in poultry health and productivity - part 1: current use in poultry research. Dehau T; Ducatelle R; Van Immerseel F; Goossens E Avian Pathol; 2022 Oct; 51(5):407-417. PubMed ID: 35675291 [TBL] [Abstract][Full Text] [Related]
7. Application of metagenomics in the human gut microbiome. Wang WL; Xu SY; Ren ZG; Tao L; Jiang JW; Zheng SS World J Gastroenterol; 2015 Jan; 21(3):803-14. PubMed ID: 25624713 [TBL] [Abstract][Full Text] [Related]
8. Advancing functional and translational microbiome research using meta-omics approaches. Zhang X; Li L; Butcher J; Stintzi A; Figeys D Microbiome; 2019 Dec; 7(1):154. PubMed ID: 31810497 [TBL] [Abstract][Full Text] [Related]
9. Omics in gut microbiome analysis. Whon TW; Shin NR; Kim JY; Roh SW J Microbiol; 2021 Mar; 59(3):292-297. PubMed ID: 33624266 [TBL] [Abstract][Full Text] [Related]
10. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. Maier TV; Lucio M; Lee LH; VerBerkmoes NC; Brislawn CJ; Bernhardt J; Lamendella R; McDermott JE; Bergeron N; Heinzmann SS; Morton JT; González A; Ackermann G; Knight R; Riedel K; Krauss RM; Schmitt-Kopplin P; Jansson JK mBio; 2017 Oct; 8(5):. PubMed ID: 29042495 [TBL] [Abstract][Full Text] [Related]
11. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Wen L; Yang L; Chen C; Li J; Fu J; Liu G; Kan Q; Ho CT; Huang Q; Lan Y; Cao Y Crit Rev Food Sci Nutr; 2024; 64(23):8367-8383. PubMed ID: 37068005 [TBL] [Abstract][Full Text] [Related]
12. Insects' potential: Understanding the functional role of their gut microbiome. Muñoz-Benavent M; Pérez-Cobas AE; García-Ferris C; Moya A; Latorre A J Pharm Biomed Anal; 2021 Feb; 194():113787. PubMed ID: 33272789 [TBL] [Abstract][Full Text] [Related]
13. Multi-omics Approaches To Decipher the Impact of Diet and Host Physiology on the Mammalian Gut Microbiome. Milani C; Alessandri G; Mancabelli L; Mangifesta M; Lugli GA; Viappiani A; Longhi G; Anzalone R; Duranti S; Turroni F; Ossiprandi MC; van Sinderen D; Ventura M Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32948523 [TBL] [Abstract][Full Text] [Related]
14. Using integrated meta-omics to appreciate the role of the gut microbiota in epilepsy. Boeri L; Donnaloja F; Campanile M; Sardelli L; Tunesi M; Fusco F; Giordano C; Albani D Neurobiol Dis; 2022 Mar; 164():105614. PubMed ID: 35017031 [TBL] [Abstract][Full Text] [Related]
15. The bovine milk microbiota: insights and perspectives from -omics studies. Addis MF; Tanca A; Uzzau S; Oikonomou G; Bicalho RC; Moroni P Mol Biosyst; 2016 Jul; 12(8):2359-72. PubMed ID: 27216801 [TBL] [Abstract][Full Text] [Related]
16. Stool multi-omics for the study of host-microbe interactions in inflammatory bowel disease. Sauceda C; Bayne C; Sudqi K; Gonzalez A; Dulai PS; Knight R; Gonzalez DJ; Gonzalez CG Gut Microbes; 2022; 14(1):2154092. PubMed ID: 36503356 [TBL] [Abstract][Full Text] [Related]
17. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Wang AJ; Song D; Hong YM; Liu NN Mol Omics; 2023 May; 19(4):283-296. PubMed ID: 36916422 [TBL] [Abstract][Full Text] [Related]
18. Metatranscriptomics: A Tool for Clinical Metagenomics. Tyagi S; Katara P OMICS; 2024 Aug; 28(8):394-407. PubMed ID: 39029911 [TBL] [Abstract][Full Text] [Related]
19. Network analyses in microbiome based on high-throughput multi-omics data. Liu Z; Ma A; Mathé E; Merling M; Ma Q; Liu B Brief Bioinform; 2021 Mar; 22(2):1639-1655. PubMed ID: 32047891 [TBL] [Abstract][Full Text] [Related]
20. Multi-omics analyses from a single sample: prior metabolite extraction does not alter the 16S rRNA-based characterization of prokaryotic community in a diversity of sample types. Duperron S; Foucault P; Duval C; Goto M; Gallet A; Colas S; Marie B FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37996396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]