These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37486127)
1. Large-Scale Cell Production Based on GMP-Grade Dissolvable Porous Microcarriers. Chen Y; Xu H; Zhang Y; Guo L; Lan M; Yang Y; Liu W; Yan X; Du Y J Vis Exp; 2023 Jul; (197):. PubMed ID: 37486127 [TBL] [Abstract][Full Text] [Related]
2. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs. Zhang Y; Na T; Zhang K; Yang Y; Xu H; Wei L; Xu L; Yan X; Liu W; Liu G; Wang B; Meng S; Du Y J Tissue Eng Regen Med; 2022 Oct; 16(10):934-944. PubMed ID: 35929499 [TBL] [Abstract][Full Text] [Related]
3. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Yan X; Zhang K; Yang Y; Deng D; Lyu C; Xu H; Liu W; Du Y Tissue Eng Part C Methods; 2020 May; 26(5):263-275. PubMed ID: 32268824 [TBL] [Abstract][Full Text] [Related]
4. Facile bead-to-bead cell-transfer method for serial subculture and large-scale expansion of human mesenchymal stem cells in bioreactors. Chen S; Sato Y; Tada Y; Suzuki Y; Takahashi R; Okanojo M; Nakashima K Stem Cells Transl Med; 2021 Sep; 10(9):1329-1342. PubMed ID: 34008349 [TBL] [Abstract][Full Text] [Related]
5. Large-Scale Expansion of Umbilical Cord Mesenchymal Stem Cells with Microcarrier Tablets in Bioreactor. Xu H; Cong Z; Zhang Y; Liu W; Yan X; Du Y Methods Mol Biol; 2022; 2436():113-125. PubMed ID: 34519979 [TBL] [Abstract][Full Text] [Related]
6. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Silva Couto P; Rotondi MC; Bersenev A; Hewitt CJ; Nienow AW; Verter F; Rafiq QA Biotechnol Adv; 2020 Dec; 45():107636. PubMed ID: 32980437 [TBL] [Abstract][Full Text] [Related]
7. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor. Tsai AC; Ma T Methods Mol Biol; 2016; 1502():77-86. PubMed ID: 27032950 [TBL] [Abstract][Full Text] [Related]
8. Dissolvable Gelatin-Based Microcarriers Generated through Droplet Microfluidics for Expansion and Culture of Mesenchymal Stromal Cells. Ng EX; Wang M; Neo SH; Tee CA; Chen CH; Van Vliet KJ Biotechnol J; 2021 Mar; 16(3):e2000048. PubMed ID: 33052012 [TBL] [Abstract][Full Text] [Related]
9. Solvent-free preparation of porous poly(l-lactide) microcarriers for cell culture. Kuterbekov M; Machillot P; Lhuissier P; Picart C; Jonas AM; Glinel K Acta Biomater; 2018 Jul; 75():300-311. PubMed ID: 29883812 [TBL] [Abstract][Full Text] [Related]
10. Scalable manufacturing of gene-modified human mesenchymal stromal cells with microcarriers in spinner flasks. Couto PS; Stibbs DJ; Rotondi MC; Takeuchi Y; Rafiq QA Appl Microbiol Biotechnol; 2023 Sep; 107(18):5669-5685. PubMed ID: 37470820 [TBL] [Abstract][Full Text] [Related]
11. Sub-confluent culture of human mesenchymal stromal cells on biodegradable polycaprolactone microcarriers enhances bone healing of rat calvarial defect. Lam AT; Sim EJ; Shekaran A; Li J; Teo KL; Goggi JL; Reuveny S; Birch WR; Oh SK Cytotherapy; 2019 Jun; 21(6):631-642. PubMed ID: 30975604 [TBL] [Abstract][Full Text] [Related]
12. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Dos Santos F; Campbell A; Fernandes-Platzgummer A; Andrade PZ; Gimble JM; Wen Y; Boucher S; Vemuri MC; da Silva CL; Cabral JM Biotechnol Bioeng; 2014 Jun; 111(6):1116-27. PubMed ID: 24420557 [TBL] [Abstract][Full Text] [Related]
13. Challenges and opportunities in downstream separation processes for mesenchymal stromal cells cultured in microcarrier-based stirred suspension bioreactors. Mawji I; Roberts EL; Dang T; Abraham B; Kallos MS Biotechnol Bioeng; 2022 Nov; 119(11):3062-3078. PubMed ID: 35962467 [TBL] [Abstract][Full Text] [Related]
14. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Haskell A; White BP; Rogers RE; Goebel E; Lopez MG; Syvyk AE; de Oliveira DA; Barreda HA; Benton J; Benavides OR; Dalal S; Bae E; Zhang Y; Maitland K; Nikolov Z; Liu F; Lee RH; Kaunas R; Gregory CA Cytotherapy; 2024 Apr; 26(4):372-382. PubMed ID: 38363250 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic-Printed Microcarrier for In Vitro Expansion of Adherent Stem Cells in 3D Culture Platform. Park W; Jang S; Kim TW; Bae J; Oh TI; Lee E Macromol Biosci; 2019 Aug; 19(8):e1900136. PubMed ID: 31268233 [TBL] [Abstract][Full Text] [Related]
17. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Rafiq QA; Coopman K; Nienow AW; Hewitt CJ Biotechnol J; 2016 Mar; 11(4):473-86. PubMed ID: 26632496 [TBL] [Abstract][Full Text] [Related]
18. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Mizukami A; Fernandes-Platzgummer A; Carmelo JG; Swiech K; Covas DT; Cabral JM; da Silva CL Biotechnol J; 2016 Aug; 11(8):1048-59. PubMed ID: 27168373 [TBL] [Abstract][Full Text] [Related]
19. Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems. Carmelo JG; Fernandes-Platzgummer A; Cabral JM; da Silva CL Methods Mol Biol; 2015; 1283():147-59. PubMed ID: 25063496 [TBL] [Abstract][Full Text] [Related]
20. Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems. Fernandes-Platzgummer A; Carmelo JG; da Silva CL; Cabral JM Methods Mol Biol; 2016; 1416():375-88. PubMed ID: 27236684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]