BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 37486787)

  • 1. Identification of mammalian transcription factors that bind to inaccessible chromatin.
    Pop RT; Pisante A; Nagy D; Martin PCN; Mikheeva LA; Hayat A; Ficz G; Zabet NR
    Nucleic Acids Res; 2023 Sep; 51(16):8480-8495. PubMed ID: 37486787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the binding mechanisms of transcription factors to DNA using a statistical thermodynamics framework.
    Martin PCN; Zabet NR
    Comput Struct Biotechnol J; 2020; 18():3590-3605. PubMed ID: 33304457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative binding of transcription factors in the human genome.
    Nie Y; Shu C; Sun X
    Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Stripe" transcription factors provide accessibility to co-binding partners in mammalian genomes.
    Zhao Y; Vartak SV; Conte A; Wang X; Garcia DA; Stevens E; Kyoung Jung S; Kieffer-Kwon KR; Vian L; Stodola T; Moris F; Chopp L; Preite S; Schwartzberg PL; Kulinski JM; Olivera A; Harly C; Bhandoola A; Heuston EF; Bodine DM; Urrutia R; Upadhyaya A; Weirauch MT; Hager G; Casellas R
    Mol Cell; 2022 Sep; 82(18):3398-3411.e11. PubMed ID: 35863348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors.
    Ma X; Ezer D; Adryan B; Stevens TJ
    Genome Biol; 2018 Oct; 19(1):174. PubMed ID: 30359306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells.
    Mann-Nüttel R; Ali S; Petzsch P; Köhrer K; Alferink J; Scheu S
    BMC Genom Data; 2021 Sep; 22(1):37. PubMed ID: 34544361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data.
    Luo K; Zhong J; Safi A; Hong LK; Tewari AK; Song L; Reddy TE; Ma L; Crawford GE; Hartemink AJ
    Genome Res; 2022 Jun; 32(6):1183-1198. PubMed ID: 35609992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding.
    He X; Chatterjee R; John S; Bravo H; Sathyanarayana BK; Biddie SC; FitzGerald PC; Stamatoyannopoulos JA; Hager GL; Vinson C
    BMC Genomics; 2013 Jun; 14():428. PubMed ID: 23805837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitotic chromosome binding predicts transcription factor properties in interphase.
    Raccaud M; Friman ET; Alber AB; Agarwal H; Deluz C; Kuhn T; Gebhardt JCM; Suter DM
    Nat Commun; 2019 Jan; 10(1):487. PubMed ID: 30700703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide in silico prediction of gene expression.
    McLeay RC; Lesluyes T; Cuellar Partida G; Bailey TL
    Bioinformatics; 2012 Nov; 28(21):2789-96. PubMed ID: 22954627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.