These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37486806)
1. Enrichment and Selection of Particles through Parallel Induced-Charge Electro-osmotic Streaming for Detection of Low-Abundance Nanoparticles and Targeted Microalgae. Chen X; Liu S; Hu XG; Liu T; Shen M; Peng Y; Hu S; Zhao Y Anal Chem; 2023 Aug; 95(31):11714-11722. PubMed ID: 37486806 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Particle Movement and High-Resolution Separation of Microalgal Cells via Induced-Charge Electroosmotic Advective Spiral Flow. Chen X; Ren Y; Jiang T; Hou L; Jiang H Anal Chem; 2021 Jan; 93(3):1667-1676. PubMed ID: 33381971 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic impedance cytometry with flat-end cylindrical electrodes for accurate and fast analysis of marine microalgae. Chen X; Shen M; Liu S; Wu C; Sun L; Song Z; Shi J; Yuan Y; Zhao Y Lab Chip; 2024 Mar; 24(7):2058-2068. PubMed ID: 38436397 [TBL] [Abstract][Full Text] [Related]
5. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes. Wang S; Zhang Z; Ma X; Yue Y; Li K; Meng Y; Wu Y Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534219 [TBL] [Abstract][Full Text] [Related]
6. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Chen X; Ren Y; Liu W; Feng X; Jia Y; Tao Y; Jiang H Anal Chem; 2017 Sep; 89(17):9583-9592. PubMed ID: 28783330 [TBL] [Abstract][Full Text] [Related]
7. Induced-charge electroosmotic trapping of particles. Ren Y; Liu W; Jia Y; Tao Y; Shao J; Ding Y; Jiang H Lab Chip; 2015 May; 15(10):2181-91. PubMed ID: 25828535 [TBL] [Abstract][Full Text] [Related]
8. Numerical investigation of field-effect control on hybrid electrokinetics for continuous and position-tunable nanoparticle concentration in microfluidics. Tao Y; Liu W; Song C; Ge Z; Li Z; Li Y; Ren Y Electrophoresis; 2022 Nov; 43(21-22):2074-2092. PubMed ID: 36030405 [TBL] [Abstract][Full Text] [Related]
9. Dielectric Characterization and Multistage Separation of Various Cells via Dielectrophoresis in a Bipolar Electrode Arrayed Device. Jiang T; Chen X; Ren Y; Tang D; Jiang H Anal Chem; 2021 Jul; 93(29):10220-10228. PubMed ID: 34261311 [TBL] [Abstract][Full Text] [Related]
10. Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode. Chen X; Ren Y; Hou L; Feng X; Jiang T; Jiang H Analyst; 2019 Aug; 144(17):5150-5163. PubMed ID: 31342972 [TBL] [Abstract][Full Text] [Related]
11. Generation of droplets with adjustable chemical concentrations based on fixed potential induced-charge electro-osmosis. Wu Y; Hu B; Ma X; Zhang H; Li W; Wang Y; Wang S Lab Chip; 2022 Jan; 22(2):403-412. PubMed ID: 34950939 [TBL] [Abstract][Full Text] [Related]
12. dc Step response of induced-charge electro-osmosis between parallel electrodes at large voltages. Sugioka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013007. PubMed ID: 25122369 [TBL] [Abstract][Full Text] [Related]
13. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Ren Y; Liu J; Liu W; Lang Q; Tao Y; Hu Q; Hou L; Jiang H Lab Chip; 2016 Aug; 16(15):2803-12. PubMed ID: 27354159 [TBL] [Abstract][Full Text] [Related]
14. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
15. [Multi-channel contactless conductivity detection device for online detection of free-flow electrophoresis separation]. Liang Z; Zhang Q; Jiang X; Liu X; Cao C; Xiao H; Liu W Se Pu; 2022 Apr; 40(4):384-390. PubMed ID: 35362686 [TBL] [Abstract][Full Text] [Related]
16. On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array. Ren Y; Song C; Liu W; Jiang T; Song J; Wu Q; Jiang H Electrophoresis; 2019 Mar; 40(6):979-992. PubMed ID: 30256428 [TBL] [Abstract][Full Text] [Related]
17. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions. Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897 [TBL] [Abstract][Full Text] [Related]
18. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics. Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional rotation of deformable cells at a bipolar electrode array using a rotating electric field. Wu Y; Yue Y; Zhang H; Ma X; Zhang Z; Li K; Meng Y; Wang S; Wang X; Huang W Lab Chip; 2024 Feb; 24(4):933-945. PubMed ID: 38273814 [TBL] [Abstract][Full Text] [Related]
20. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field. Rajnak M; Kurimsky J; Dolnik B; Kopcansky P; Tomasovicova N; Taculescu-Moaca EA; Timko M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032310. PubMed ID: 25314449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]