These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 37486829)
1. Multi-View Clustering With Graph Learning for scRNA-Seq Data. Wu W; Zhang W; Hou W; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829 [TBL] [Abstract][Full Text] [Related]
2. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
3. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
4. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering. Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706 [TBL] [Abstract][Full Text] [Related]
5. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data. Wang H; Zhao J; Zheng C; Su Y PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702 [TBL] [Abstract][Full Text] [Related]
6. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
7. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data. Wu W; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190 [TBL] [Abstract][Full Text] [Related]
8. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
9. Robust Graph Regularized NMF with Dissimilarity and Similarity Constraints for ScRNA-seq Data Clustering. Shu Z; Long Q; Zhang L; Yu Z; Wu XJ J Chem Inf Model; 2022 Dec; 62(23):6271-6286. PubMed ID: 36459053 [TBL] [Abstract][Full Text] [Related]
10. Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks. Xu L; Li Z; Ren J; Liu S; Xu Y Comput Biol Med; 2024 Sep; 179():108921. PubMed ID: 39059210 [TBL] [Abstract][Full Text] [Related]
11. Single-cell RNA-sequencing data clustering using variational graph attention auto-encoder with self-supervised leaning. Li B; Peng C; You Z; Zhang X; Zhang S Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37898127 [TBL] [Abstract][Full Text] [Related]
12. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related]
13. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data. Wu W; Liu Z; Ma X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230 [TBL] [Abstract][Full Text] [Related]
14. Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data. Xu Y; Zhang W; Zheng X; Cai X Interdiscip Sci; 2024 Mar; 16(1):1-15. PubMed ID: 37815679 [TBL] [Abstract][Full Text] [Related]
15. scMGCN: A Multi-View Graph Convolutional Network for Cell Type Identification in scRNA-seq Data. Sun H; Qu H; Duan K; Du W Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396909 [TBL] [Abstract][Full Text] [Related]
16. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids. Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248 [TBL] [Abstract][Full Text] [Related]
17. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data. Cheng Y; Ma X Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138 [TBL] [Abstract][Full Text] [Related]
18. Attention-based deep clustering method for scRNA-seq cell type identification. Li S; Guo H; Zhang S; Li Y; Li M PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464 [TBL] [Abstract][Full Text] [Related]
19. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks. Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051 [TBL] [Abstract][Full Text] [Related]
20. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis. Wang HY; Zhao JP; Su YS; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]