BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37487335)

  • 1. Designing a cercosporin-bioinspired bifunctional algicide with flocculation and photocatalysis for efficiently controlling harmful cyanobacterial blooms.
    Yuan Z; Liu M; Su Z; Xu H; Liu C; Lu L; Wang L; Zhu X; Zhang Y; Rao Y
    J Hazard Mater; 2023 Oct; 459():132110. PubMed ID: 37487335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cercosporin-bioinspired photoinactivation of harmful cyanobacteria under natural sunlight via bifunctional mechanisms.
    Liu M; Zhang Y; Yuan Z; Lu L; Liu X; Zhu X; Wang L; Liu C; Rao Y
    Water Res; 2022 May; 215():118242. PubMed ID: 35259559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algicidal Activity of Streptomyces eurocidicus JXJ-0089 Metabolites and Their Effects on Microcystis Physiology.
    Zhang BH; Ding ZG; Li HQ; Mou XZ; Zhang YQ; Yang JY; Zhou EM; Li WJ
    Appl Environ Microbiol; 2016 Sep; 82(17):5132-43. PubMed ID: 27316950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms.
    Zhang D; Ye Q; Zhang F; Shao X; Fan Y; Zhu X; Li Y; Yao L; Tian Y; Zheng T; Xu H
    Chemosphere; 2019 Mar; 218():138-146. PubMed ID: 30471494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Immolative Polythiophene for Sunlight Inactivation of Harmful Cyanobacteria.
    Lang Y; Wang Y; Zhou R; Wu P
    Environ Sci Technol; 2023 May; 57(20):7800-7808. PubMed ID: 37163388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a High-Efficient Algicidal Bacterium against
    Zhang H; Xie Y; Zhang R; Zhang Z; Hu X; Cheng Y; Geng R; Ma Z; Li R
    Toxins (Basel); 2023 Mar; 15(3):. PubMed ID: 36977111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species.
    Hou X; Yan Y; Wang Y; Jiang T; Zhang X; Dai X; Igarashi Y; Luo F; Yang C
    Chemosphere; 2023 Jan; 310():136767. PubMed ID: 36241112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Potentially New Algaecide for Controlling Harmful Cyanobacteria Blooms Which is Ecologically Safe and Selective.
    Ke M; Feng L; Huang S; Lu T; Yu Z; Yang Y; Hu H; Peijnenburg WJGM; Feng L; Qian H
    J Agric Food Chem; 2022 Aug; 70(33):10134-10143. PubMed ID: 35972278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of cyanobacterial-killing biologically derived substances (BDSs) using an ecologically safe and cost-effective naphthoquinone derivative.
    Joo JH; Wang P; Park BS; Byun JH; Choi HJ; Kim SH; Han MS
    Ecotoxicol Environ Saf; 2017 Jul; 141():188-198. PubMed ID: 28349870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel algicidal bacteria isolated from native snail lived in Taihu Lake against algal blooms: identification, degradation kinetic, and algicidal mechanism.
    Huang J; Xu M; Zhang W; Mao L
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):83921-83930. PubMed ID: 35776301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake.
    Lee TA; Rollwagen-Bollens G; Bollens SM; Faber-Hammond JJ
    Ecotoxicol Environ Saf; 2015 Apr; 114():318-25. PubMed ID: 25060409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterotrophic Bacteria Dominate Catalase Expression during
    Smith DJ; Berry MA; Cory RM; Johengen TH; Kling GW; Davis TW; Dick GJ
    Appl Environ Microbiol; 2022 Jul; 88(14):e0254421. PubMed ID: 35862723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Algicides of
    Zhang B; Yang Y; Xie W; He W; Xie J; Liu W
    Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory-scale evaluation of algaecide effectiveness for control of microcystin-producing cyanobacteria from Lake Okeechobee, Florida (USA).
    Kinley-Baird C; Calomeni A; Berthold DE; Lefler FW; Barbosa M; Rodgers JH; Laughinghouse HD
    Ecotoxicol Environ Saf; 2021 Jan; 207():111233. PubMed ID: 32916528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of bacterial communities to cyanobacterial harmful algal blooms in Lake Taihu, China.
    Su X; Steinman AD; Tang X; Xue Q; Zhao Y; Xie L
    Harmful Algae; 2017 Sep; 68():168-177. PubMed ID: 28962977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Halamine Derivatized Nanoparticles with Selective Cyanocidal Activity: Potential for Targeted Elimination of Harmful Cyanobacterial Blooms.
    Sadhasivam G; Gelber C; Zakin V; Margel S; Shapiro OH
    Environ Sci Technol; 2019 Aug; 53(15):9160-9170. PubMed ID: 31328506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algicidal Activity of Bacillamide Alkaloids and Their Analogues against Marine and Freshwater Harmful Algae.
    Wang B; Tao Y; Liu Q; Liu N; Jin Z; Xu X
    Mar Drugs; 2017 Aug; 15(8):. PubMed ID: 28783131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms.
    Tseytlin IN; Antrim AK; Gong P
    Toxins (Basel); 2024 Jan; 16(1):. PubMed ID: 38251256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective flocculation of Microcystis aeruginosa with simultaneous nutrient precipitation from hydrolyzed human urine.
    Wang YS; Tong ZH; Wang LF; Sheng GP; Yu HQ
    Chemosphere; 2018 Feb; 193():472-478. PubMed ID: 29156332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.