These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37487397)
1. Dual-channel MIRECL portable devices with impedance effect coupled smartphone and machine learning system for tyramine identification and quantification. Lu Z; Qin J; Wu C; Yin J; Sun M; Su G; Wang X; Wang Y; Ye J; Liu T; Rao H; Feng L Food Chem; 2023 Dec; 429():136920. PubMed ID: 37487397 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-assisted Te-CdS@Mn Lu Z; Dai S; Liu T; Yang J; Sun M; Wu C; Su G; Wang X; Rao H; Yin H; Zhou X; Ye J; Wang Y Biosens Bioelectron; 2023 Feb; 222():114996. PubMed ID: 36521203 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide. Zhang Y; Cui Y; Sun M; Wang T; Liu T; Dai X; Zou P; Zhao Y; Wang X; Wang Y; Zhou M; Su G; Wu C; Yin H; Rao H; Lu Z Biosens Bioelectron; 2022 Aug; 209():114262. PubMed ID: 35429772 [TBL] [Abstract][Full Text] [Related]
4. Sulfur vacancy defects mediated CdZnTeS@BC heterojunction: Artificial intelligence-assisted self-enhanced electrochemiluminescence molecularly imprinted sensing of CTC. Wang Y; Dai S; Liu T; Wu C; Sun M; Su G; Ye J; Wang X; He J; Rao H; Lu Z Biosens Bioelectron; 2024 Mar; 248():115941. PubMed ID: 38160634 [TBL] [Abstract][Full Text] [Related]
5. Portable, intelligent MIECL sensing platform for ciprofloxacin detection using a fast convolutional neural networks-assisted Tb@Lu Lu Z; Gong Y; Shen C; Chen H; Zhu W; Liu T; Wu C; Sun M; Su G; Wang X; Wang Y; Ye J; Liu X; Rao H Food Chem; 2024 Jun; 444():138656. PubMed ID: 38325090 [TBL] [Abstract][Full Text] [Related]
6. Dual-channel molecularly imprinted sensor based on dual-potential electrochemiluminescence of Zn-MOFs for double detection of trace chloramphenicol. Zhao Y; Wang R; Wang Y; Jie G; Zhou H Food Chem; 2023 Jul; 413():135627. PubMed ID: 36773365 [TBL] [Abstract][Full Text] [Related]
7. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO Zhang W; Xiong H; Chen M; Zhang X; Wang S Biosens Bioelectron; 2017 Oct; 96():55-61. PubMed ID: 28460332 [TBL] [Abstract][Full Text] [Related]
8. Highly selective molecularly imprinted-electrochemiluminescence sensor based on perovskite/Ru(bpy) Pan QF; Jiao HF; Liu H; You JJ; Sun AL; Zhang ZM; Shi XZ Sci Total Environ; 2022 Oct; 843():156925. PubMed ID: 35753451 [TBL] [Abstract][Full Text] [Related]
9. A novel Bi Liu N; Wang D; Li Z; Xing Y; Ma Q; Zhang Z Food Chem; 2024 Jun; 444():138594. PubMed ID: 38309076 [TBL] [Abstract][Full Text] [Related]
10. Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine. Babamiri B; Salimi A; Hallaj R; Hasanzadeh M Biosens Bioelectron; 2018 Jun; 107():272-279. PubMed ID: 29482181 [TBL] [Abstract][Full Text] [Related]
11. A robust molecularly imprinted electrochemiluminescence sensor based on a Ni-Co nanoarray for the sensitive detection of spiramycin. Li Y; Xu J; Cheng R; Yang J; Li C; Liu Y; Xu R; Wei Q; Zhang Y Analyst; 2022 Nov; 147(22):5178-5186. PubMed ID: 36239749 [TBL] [Abstract][Full Text] [Related]
12. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Li S; Liu C; Yin G; Zhang Q; Luo J; Wu N Biosens Bioelectron; 2017 May; 91():687-691. PubMed ID: 28119249 [TBL] [Abstract][Full Text] [Related]
13. Molecularly imprinted sensor based on Russian Matryoshka structured molecules for enhanced specific identification and double amplification in ultra-trace Tb Li J; Yang B; Pan H; Xu G Biosens Bioelectron; 2018 Jun; 109():224-229. PubMed ID: 29567567 [TBL] [Abstract][Full Text] [Related]
14. A ratiometric electrochemiluminescence sensing platform for robust ascorbic acid analysis based on a molecularly imprinted polymer modified bipolar electrode. Hu Y; He Y; Peng Z; Li Y Biosens Bioelectron; 2020 Nov; 167():112490. PubMed ID: 32805510 [TBL] [Abstract][Full Text] [Related]
15. A simplified molecularly imprinted ECL sensor based on Mn Kuang K; Li Y; Chen Y; Ji Y; Jia N Analyst; 2024 Feb; 149(4):1318-1326. PubMed ID: 38251970 [TBL] [Abstract][Full Text] [Related]
16. Machine learning assisted and smartphone integrated homogeneous electrochemiluminescence biosensor platform for sample to answer detection of various human metabolites. Kumar A; Jain D; Bahuguna J; Bhaiyya M; Dubey SK; Javed A; Goel S Biosens Bioelectron; 2023 Oct; 238():115582. PubMed ID: 37572409 [TBL] [Abstract][Full Text] [Related]
17. Design and Biosensing of a Ratiometric Electrochemiluminescence Resonance Energy Transfer Aptasensor between a g-C Wang Y; Zhang Y; Sha H; Xiong X; Jia N ACS Appl Mater Interfaces; 2019 Oct; 11(40):36299-36306. PubMed ID: 31514493 [TBL] [Abstract][Full Text] [Related]
18. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
19. Gold-copper-doped lanthanide luminescent metal-organic backbone induced self-enhanced molecularly imprinted ECL sensors for ultra-sensitive detection of chlorpyrifos. Fang Y; Li Y; Zang X; Chen Y; Wang X; Wang N; Meng X; Cui B Food Chem; 2024 Jun; 443():138533. PubMed ID: 38320376 [TBL] [Abstract][Full Text] [Related]
20. A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Wang Q; Li S; Li J Anal Bioanal Chem; 2018 Aug; 410(21):5165-5172. PubMed ID: 29922862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]