BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37487829)

  • 1. Artificial intelligence based multimodal language decoding from brain activity: A review.
    Zhao Y; Chen Y; Cheng K; Huang W
    Brain Res Bull; 2023 Sep; 201():110713. PubMed ID: 37487829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual-channel language decoding from brain activity with progressive transfer training.
    Huang W; Yan H; Cheng K; Wang Y; Wang C; Li J; Li C; Li C; Zuo Z; Chen H
    Hum Brain Mapp; 2021 Oct; 42(15):5089-5100. PubMed ID: 34314088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Artificial Intelligence in Decoding Speech from EEG Signals: A Scoping Review.
    Shah U; Alzubaidi M; Mohsen F; Abd-Alrazaq A; Alam T; Househ M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146323
    [No Abstract]   [Full Text] [Related]  

  • 4. A neural decoding algorithm that generates language from visual activity evoked by natural images.
    Huang W; Yan H; Cheng K; Wang C; Li J; Wang Y; Li C; Li C; Li Y; Zuo Z; Chen H
    Neural Netw; 2021 Dec; 144():90-100. PubMed ID: 34478941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal target selection for intracranial neural decoding of abstract and concrete semantics.
    Nagata K; Kunii N; Shimada S; Fujitani S; Takasago M; Saito N
    Cereb Cortex; 2022 Dec; 32(24):5544-5554. PubMed ID: 35169837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding spoken phonemes from sensorimotor cortex with high-density ECoG grids.
    Ramsey NF; Salari E; Aarnoutse EJ; Vansteensel MJ; Bleichner MG; Freudenburg ZV
    Neuroimage; 2018 Oct; 180(Pt A):301-311. PubMed ID: 28993231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial intelligence that increases simulated brain-computer interface performance.
    Olsen S; Zhang J; Liang KF; Lam M; Riaz U; Kao JC
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33978599
    [No Abstract]   [Full Text] [Related]  

  • 8. Key considerations in designing a speech brain-computer interface.
    Bocquelet F; Hueber T; Girin L; Chabardès S; Yvert B
    J Physiol Paris; 2016 Nov; 110(4 Pt A):392-401. PubMed ID: 28756027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semantic reconstruction of continuous language from non-invasive brain recordings.
    Tang J; LeBel A; Jain S; Huth AG
    Nat Neurosci; 2023 May; 26(5):858-866. PubMed ID: 37127759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface, interaction, and intelligence in generalized brain-computer interfaces.
    Gao X; Wang Y; Chen X; Gao S
    Trends Cogn Sci; 2021 Aug; 25(8):671-684. PubMed ID: 34116918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal motor imagery decoding method based on temporal spatial feature alignment and fusion.
    Zhang Y; Qiu S; He H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36854181
    [No Abstract]   [Full Text] [Related]  

  • 12. Decoding articulatory and phonetic components of naturalistic continuous speech from the distributed language network.
    Thomas TM; Singh A; Bullock LP; Liang D; Morse CW; Scherschligt X; Seymour JP; Tandon N
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37487487
    [No Abstract]   [Full Text] [Related]  

  • 13. Generalizing neural signal-to-text brain-computer interfaces.
    Sheth J; Tankus A; Tran M; Pouratian N; Fried I; Speier W
    Biomed Phys Eng Express; 2021 Apr; 7(3):. PubMed ID: 33836507
    [No Abstract]   [Full Text] [Related]  

  • 14. AI-Generated Images for Speech Pathology-An Exploratory Application to Aphasia Assessment and Intervention Materials.
    Pierce JE
    Am J Speech Lang Pathol; 2024 Jan; 33(1):443-451. PubMed ID: 37856083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-based auditory attention decoding using speech-level-based segmented computational models.
    Wang L; Wu EX; Chen F
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33957606
    [No Abstract]   [Full Text] [Related]  

  • 16. A bilingual speech neuroprosthesis driven by cortical articulatory representations shared between languages.
    Silva AB; Liu JR; Metzger SL; Bhaya-Grossman I; Dougherty ME; Seaton MP; Littlejohn KT; Tu-Chan A; Ganguly K; Moses DA; Chang EF
    Nat Biomed Eng; 2024 May; ():. PubMed ID: 38769157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain decoding in multiple languages: Can cross-language brain decoding work?
    Xu M; Li D; Li P
    Brain Lang; 2021 Apr; 215():104922. PubMed ID: 33556764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions.
    Li R; Wang X; Lawler K; Garg S; Bai Q; Alty J
    J Biomed Inform; 2022 Mar; 127():104030. PubMed ID: 35183766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The combination of brain-computer interfaces and artificial intelligence: applications and challenges.
    Zhang X; Ma Z; Zheng H; Li T; Chen K; Wang X; Liu C; Xu L; Wu X; Lin D; Lin H
    Ann Transl Med; 2020 Jun; 8(11):712. PubMed ID: 32617332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proposed artificial intelligence-based real-time speech-to-text to sign language translator for South African official languages for the COVID-19 era and beyond: In pursuit of solutions for the hearing impaired.
    Madahana MC; Khoza-Shangase K; Moroe N; Mayombo D; Nyandoro O; Ekoru J
    S Afr J Commun Disord; 2022 Aug; 69(2):e1-e11. PubMed ID: 36073078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.