These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37487985)

  • 1. Integrating thermodynamics and mathematical modelling to investigate the stoichiometry and kinetics of sulphide oxidation-nitrate reduction with a special focus on partial autotrophic denitrification.
    Valdés E; Gabriel D; González D; Munz G; Polizzi C
    Chemosphere; 2023 Oct; 339():139605. PubMed ID: 37487985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successful sulphide-driven partial denitrification: Efficiency, stability and resilience in SRT-controlled conditions.
    Polizzi C; Gabriel D; Munz G
    Chemosphere; 2022 May; 295():133936. PubMed ID: 35149015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.
    Fajardo C; Mora M; Fernández I; Mosquera-Corral A; Campos JL; Méndez R
    Chemosphere; 2014 Feb; 97():10-5. PubMed ID: 24216266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal.
    Huang S; Yu D; Chen G; Wang Y; Tang P; Liu C; Tian Y; Zhang M
    Chemosphere; 2021 Sep; 278():130413. PubMed ID: 33823349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulfide oxidation: Reaction kinetics and stoichiometry.
    Xu XJ; Chen C; Guo HL; Wang AJ; Ren NQ; Lee DJ
    Sci Rep; 2016 Feb; 6():21032. PubMed ID: 26864216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification.
    Lu H; Huang H; Yang W; Mackey HR; Khanal SK; Wu D; Chen GH
    Water Res; 2018 Apr; 133():165-172. PubMed ID: 29407698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining thiosulfate-driven autotrophic denitrification through respirometry.
    Mora M; Guisasola A; Gamisans X; Gabriel D
    Chemosphere; 2014 Oct; 113():1-8. PubMed ID: 25065782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment.
    Yin Z; Xie L; Khanal SK; Zhou Q
    Environ Technol; 2016; 37(9):1110-21. PubMed ID: 26495763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance.
    Kilic A; Sahinkaya E; Cinar O
    Environ Technol; 2014; 35(21-24):2796-804. PubMed ID: 25176483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity control of nitrite and nitrate with the reaction of S
    Chen F; Li X; Gu C; Huang Y; Yuan Y
    Bioresour Technol; 2018 Oct; 266():211-219. PubMed ID: 29982041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ
    Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate.
    Pan J; Wei C; Fu B; Ma J; Preis S; Wu H; Zhu S
    Bioresour Technol; 2018 Mar; 252():20-27. PubMed ID: 29306125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.
    Chung J; Amin K; Kim S; Yoon S; Kwon K; Bae W
    Water Res; 2014 Jul; 58():169-78. PubMed ID: 24755301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling of autotrophic denitrification (AD) process with sulphide as electron donor.
    Xu G; Yin F; Chen S; Xu Y; Yu HQ
    Water Res; 2016 Mar; 91():225-34. PubMed ID: 26799712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantified nitrogen metabolic network by reaction kinetics and mathematical model in a single-stage microaerobic system treating low COD/TN wastewater.
    Sun Z; Li J; Fan Y; Meng J
    Water Res; 2022 Oct; 225():119112. PubMed ID: 36166999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization.
    Bai Y; Wang S; Zhussupbekova A; Shvets IV; Lee PH; Zhan X
    Water Res; 2023 Mar; 231():119619. PubMed ID: 36689879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification.
    Liu T; Hu Y; Chen N; He Q; Feng C
    J Hazard Mater; 2021 Aug; 416():125844. PubMed ID: 33878651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor.
    Cui YX; Biswal BK; van Loosdrecht MCM; Chen GH; Wu D
    Water Res; 2019 Dec; 166():115038. PubMed ID: 31505308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells.
    Moraes BS; Souza TS; Foresti E
    Water Sci Technol; 2011; 64(3):731-8. PubMed ID: 22097054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor.
    Liu C; Li W; Li X; Zhao D; Ma B; Wang Y; Liu F; Lee DJ
    Bioresour Technol; 2017 Nov; 243():1237-1240. PubMed ID: 28720275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.