These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37488058)

  • 1. Towards the optimization of drug delivery to the cochlear apex: Influence of polymer and drug selection in biodegradable intracochlear implants.
    Lehner E; Honeder C; Knolle W; Binder W; Scheffler J; Plontke SK; Liebau A; Mäder K
    Int J Pharm; 2023 Aug; 643():123268. PubMed ID: 37488058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(DL-lactide-co-glycolide) implants.
    Desai KG; Mallery SR; Schwendeman SP
    Eur J Pharm Biopharm; 2008 Sep; 70(1):187-98. PubMed ID: 18472254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor.
    Desai KG; Mallery SR; Schwendeman SP
    Pharm Res; 2008 Mar; 25(3):586-97. PubMed ID: 17891553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of biodegradable poly(malate) and poly(lactic-co-glycolic acid) microparticles with low molecular polyethylene glycol.
    Yoncheva K; Lambov N; Miloshev S
    Drug Dev Ind Pharm; 2009 Apr; 35(4):449-54. PubMed ID: 19288298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer degradation induced drug precipitation in PLGA implants - Why less is sometimes more.
    Zlomke C; Barth M; Mäder K
    Eur J Pharm Biopharm; 2019 Jun; 139():142-152. PubMed ID: 30902733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions.
    Lehner E; Gündel D; Liebau A; Plontke S; Mäder K
    Int J Pharm X; 2019 Dec; 1():100015. PubMed ID: 31517280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of intranasal implantable devices for schizophrenia treatment.
    Utomo E; Domínguez-Robles J; Moreno-Castellanos N; Stewart SA; Picco CJ; Anjani QK; Simón JA; Peñuelas I; Donnelly RF; Larrañeta E
    Int J Pharm; 2022 Aug; 624():122061. PubMed ID: 35908633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysozyme release and polymer erosion behavior of injectable implants prepared from PLGA-PEG block copolymers and PLGA/PLGA-PEG blends.
    Vesna Milacic VM; Schwendeman SP
    Pharm Res; 2014 Feb; 31(2):436-48. PubMed ID: 23959854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.
    Pang J; Luan Y; Li F; Cai X; Du J; Li Z
    Int J Nanomedicine; 2011; 6():659-65. PubMed ID: 21674021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled release of NFkappaB decoy oligonucleotides from biodegradable polymer microparticles.
    Zhu X; Lu L; Currier BL; Windebank AJ; Yaszemski MJ
    Biomaterials; 2002 Jul; 23(13):2683-92. PubMed ID: 12059017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing of Dexamethasone-Poly(d,l-Lactide-co-Glycolide) Implants Using Hot-Melt Extrusion: Within- and Between-Batch Product Performance Comparisons.
    Kelley RA; Ghaffari A; Wang Y; Choi S; Taylor JR; Hartman RR; Kompella UB
    J Ocul Pharmacol Ther; 2020 Jun; 36(5):290-297. PubMed ID: 32330403
    [No Abstract]   [Full Text] [Related]  

  • 12. PLGA-based monolithic filaments prepared by hot-melt extrusion: In-vitro comparative study.
    Kamel R; Abbas H
    Ann Pharm Fr; 2018 Mar; 76(2):97-106. PubMed ID: 29145995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of gentamicin sulphate from biodegradable PLGA-implants produced by hot melt extrusion.
    Gosau M; Müller BW
    Pharmazie; 2010 Jul; 65(7):487-92. PubMed ID: 20662316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ forming PLGA implants: Towards less toxic solvents.
    Ramos F; Willart JF; Neut C; Agossa K; Siepmann J; Siepmann F
    Int J Pharm; 2024 May; 657():124121. PubMed ID: 38621617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Lysozyme-PLGA-Loaded Microparticles for Controlled Release Using Hot-Melt Extrusion.
    Farinha S; Moura C; Afonso MD; Henriques J
    AAPS PharmSciTech; 2020 Oct; 21(7):274. PubMed ID: 33033873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled nanomicelles using PLGA-PEG amphiphilic block copolymer for insulin delivery: a physicochemical investigation and determination of CMC values.
    Ashjari M; Khoee S; Mahdavian AR; Rahmatolahzadeh R
    J Mater Sci Mater Med; 2012 Apr; 23(4):943-53. PubMed ID: 22354326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin.
    Duque L; Körber M; Bodmeier R
    Int J Pharm; 2018 Mar; 538(1-2):139-146. PubMed ID: 29355654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro drug release behavior, mechanism and antimicrobial activity of rifampicin loaded low molecular weight PLGA-PEG-PLGA triblock copolymeric nanospheres.
    Gajendiran M; Divakar S; Raaman N; Balasubramanian S
    Curr Drug Deliv; 2013 Dec; 10(6):722-31. PubMed ID: 23701139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants.
    Cossé A; König C; Lamprecht A; Wagner KG
    AAPS PharmSciTech; 2017 Jan; 18(1):15-26. PubMed ID: 27193002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.