BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37488135)

  • 1. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning.
    Park CS; Kang SR; Kim JE; Huh KH; Lee SS; Heo MS; Han JJ; Yi WJ
    Sci Rep; 2023 Jul; 13(1):11921. PubMed ID: 37488135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: a human skull phantom study.
    Yong TH; Yang S; Lee SJ; Park C; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ
    Sci Rep; 2021 Jul; 11(1):15083. PubMed ID: 34301984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Cone-Beam CT of Bone Mineral Density Using Model-Based Reconstruction.
    Cao Q; Sisniega A; Stayman JW; Yorkston J; Siewerdsen JH; Zbijewski W
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10948():. PubMed ID: 31384094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography.
    Aranyarachkul P; Caruso J; Gantes B; Schulz E; Riggs M; Dus I; Yamada JM; Crigger M
    Int J Oral Maxillofac Implants; 2005; 20(3):416-24. PubMed ID: 15973953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT.
    González-García R; Monje F
    Clin Oral Implants Res; 2013 Aug; 24(8):871-9. PubMed ID: 22250839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning.
    Rossi M; Belotti G; Paganelli C; Pella A; Barcellini A; Cerveri P; Baroni G
    Med Phys; 2021 Nov; 48(11):7112-7126. PubMed ID: 34636429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy.
    Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X
    Med Phys; 2023 Feb; 50(2):879-893. PubMed ID: 36183234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network.
    Yasaka K; Akai H; Kunimatsu A; Kiryu S; Abe O
    Eur Radiol; 2020 Jun; 30(6):3549-3557. PubMed ID: 32060712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method of assessment of BMD using CBCT for implant placement: A retrospective study.
    AlQahtani SM
    Medicine (Baltimore); 2023 Jul; 102(27):e34203. PubMed ID: 37417616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: A phantom-patient study.
    Li Y; Jiang Y; Yu X; Ren B; Wang C; Chen S; Ma D; Su D; Liu H; Ren X; Yang X; Gao J; Wu Y
    Front Endocrinol (Lausanne); 2022; 13():884306. PubMed ID: 36034436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiresolution residual deep neural network for improving pelvic CBCT image quality.
    Wu W; Qu J; Cai J; Yang R
    Med Phys; 2022 Mar; 49(3):1522-1534. PubMed ID: 35034367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy.
    Harms J; Lei Y; Wang T; McDonald M; Ghavidel B; Stokes W; Curran WJ; Zhou J; Liu T; Yang X
    Med Phys; 2020 Sep; 47(9):4416-4427. PubMed ID: 32579710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated analysis of three-dimensional CBCT images taken in natural head position that combines facial profile processing and multiple deep-learning models.
    Ahn J; Nguyen TP; Kim YJ; Kim T; Yoon J
    Comput Methods Programs Biomed; 2022 Nov; 226():107123. PubMed ID: 36156440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis.
    Zhang Z; Huang M; Jiang Z; Chang Y; Lu K; Yin FF; Tran P; Wu D; Beltran C; Ren L
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35313293
    [No Abstract]   [Full Text] [Related]  

  • 17. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network.
    Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y
    Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of generalization ability for deep learning-based auto-segmentation accuracy in limited field of view CBCT of male pelvic region.
    Hirashima H; Nakamura M; Imanishi K; Nakao M; Mizowaki T
    J Appl Clin Med Phys; 2023 May; 24(5):e13912. PubMed ID: 36659871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of CBCT-based dose calculation methods in head and neck cancer radiotherapy: from Hounsfield unit to density calibration curve to deep learning.
    Barateau A; De Crevoisier R; Largent A; Mylona E; Perichon N; Castelli J; Chajon E; Acosta O; Simon A; Nunes JC; Lafond C
    Med Phys; 2020 Oct; 47(10):4683-4693. PubMed ID: 32654160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Bone Typing Using Quantitative Cone-Beam Computed Tomography.
    Huang H; Chen D; Lippuner K; Hunziker EB
    Int Dent J; 2023 Apr; 73(2):259-266. PubMed ID: 36182605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.