These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37488144)
1. Research on surrogate model of dam numerical simulation with multiple outputs based on adaptive sampling. Liang J; Li Z; Pan L; Khailah EY; Sun L; Lu W Sci Rep; 2023 Jul; 13(1):11955. PubMed ID: 37488144 [TBL] [Abstract][Full Text] [Related]
2. Adaptive design of experiments to fit surrogate Gaussian process regression models allows fast sensitivity analysis of the input waveform for patient-specific 3D CFD models of liver radioembolization. Bomberna T; Maleux G; Debbaut C Comput Methods Programs Biomed; 2024 Jul; 252():108234. PubMed ID: 38823206 [TBL] [Abstract][Full Text] [Related]
3. Active learning for adaptive surrogate model improvement in high-dimensional problems. Guo Y; Nath P; Mahadevan S; Witherell P Struct Multidiscipl Optim; 2024; 67(7):122. PubMed ID: 39006128 [TBL] [Abstract][Full Text] [Related]
4. A machine learning-based comparative analysis of surrogate models for design optimisation in computational fluid dynamics. Mukhtar A; Yasir ASHM; Nasir MFM Heliyon; 2023 Aug; 9(8):e18674. PubMed ID: 37554836 [TBL] [Abstract][Full Text] [Related]
5. A construction strategy for conservative adaptive Kriging surrogate model with application in the optimal design of contaminated groundwater extraction-treatment. Zhang S; Qiang J; Liu H; Zhu X; Lv H Environ Sci Pollut Res Int; 2022 Jun; 29(28):42792-42808. PubMed ID: 35088275 [TBL] [Abstract][Full Text] [Related]
6. ASAMS: An Adaptive Sequential Sampling and Automatic Model Selection for Artificial Intelligence Surrogate Modeling. Duchanoy CA; Calvo H; Moreno-Armendáriz MA Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957671 [TBL] [Abstract][Full Text] [Related]
7. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method-A Case Study of Western Jilin Province. An Y; Lu W; Cheng W Int J Environ Res Public Health; 2015 Jul; 12(8):8897-918. PubMed ID: 26264008 [TBL] [Abstract][Full Text] [Related]
8. A deep learning based surrogate model for the parameter identification problem in probabilistic cellular automaton epidemic models. Pereira FH; Schimit PHT; Bezerra FE Comput Methods Programs Biomed; 2021 Jun; 205():106078. PubMed ID: 33882419 [TBL] [Abstract][Full Text] [Related]
9. GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations. Shi N; Xu J; Wurster SW; Guo H; Woodring J; Van Roekel LP; Shen HW IEEE Trans Vis Comput Graph; 2022 Jun; 28(6):2301-2313. PubMed ID: 35389867 [TBL] [Abstract][Full Text] [Related]
10. Uncertainty analysis for precipitation and sea-level rise of a variable-density groundwater simulation model based on surrogate models. Han Z; Lu W; Lin J Environ Sci Pollut Res Int; 2020 Aug; 27(22):28077-28090. PubMed ID: 32405952 [TBL] [Abstract][Full Text] [Related]
11. Multi-objective optimization of coronary stent using Kriging surrogate model. Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700 [TBL] [Abstract][Full Text] [Related]
12. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues. Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259 [TBL] [Abstract][Full Text] [Related]
13. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier. Guyonvarch E; Ramin E; Kulahci M; Plósz BG Water Res; 2015 Oct; 83():396-411. PubMed ID: 26248321 [TBL] [Abstract][Full Text] [Related]
14. Groundwater contaminant source characterization with simulation model parameter estimation utilizing a heuristic search strategy based on the stochastic-simulation statistic method. Wang H; Lu W; Li J J Contam Hydrol; 2020 Oct; 234():103681. PubMed ID: 32739635 [TBL] [Abstract][Full Text] [Related]
15. Fast calculating surrogate models for leg and head impact in vehicle-pedestrian collision simulations. Wimmer P; Benedikt M; Huber P; Ferenczi I Traffic Inj Prev; 2015; 16 Suppl 1():S84-90. PubMed ID: 26027979 [TBL] [Abstract][Full Text] [Related]
16. Application of ensemble surrogates and adaptive sequential sampling to optimal groundwater remediation design at DNAPLs-contaminated sites. Ouyang Q; Lu W; Miao T; Deng W; Jiang C; Luo J J Contam Hydrol; 2017 Dec; 207():31-38. PubMed ID: 29128132 [TBL] [Abstract][Full Text] [Related]
17. A memory optimization method combined with adaptive time-step method for cardiac cell simulation based on multi-GPU. Luo CH; Ye H; Chen X Med Biol Eng Comput; 2020 Nov; 58(11):2821-2833. PubMed ID: 32954459 [TBL] [Abstract][Full Text] [Related]
18. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. Sarkar AX; Sobie EA PLoS Comput Biol; 2010 Sep; 6(9):e1000914. PubMed ID: 20824123 [TBL] [Abstract][Full Text] [Related]
19. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. Halloran JP; Erdemir A; van den Bogert AJ J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930 [TBL] [Abstract][Full Text] [Related]
20. Application of artificial intelligence deep learning in numerical simulation of seawater intrusion. Miao T; Guo J Environ Sci Pollut Res Int; 2021 Oct; 28(38):54096-54104. PubMed ID: 34046828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]