These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 37488584)
1. Transcriptome profile and immune infiltrated landscape revealed a novel role of γδT cells in mediating pyroptosis in celiac disease. Chen S; Liu X; Wang Z; Zheng D; Wang Y; Yan Y; Peng X; Ye Q; Chen Y J Transl Med; 2023 Jul; 21(1):497. PubMed ID: 37488584 [TBL] [Abstract][Full Text] [Related]
2. Exploring the molecular mechanisms and shared gene signatures between celiac disease and ulcerative colitis based on bulk RNA and single-cell sequencing: Experimental verification. Wan C; Ji T; Wang L; Wu Q; Chen Q; Wang Y; Li Y; He F; Liu W; Zhong W; Wang B Int Immunopharmacol; 2024 May; 133():112059. PubMed ID: 38615385 [TBL] [Abstract][Full Text] [Related]
3. Bulk and single-cell transcriptome analyses of islet tissue unravel gene signatures associated with pyroptosis and immune infiltration in type 2 diabetes. Song Y; He C; Jiang Y; Yang M; Xu Z; Yuan L; Zhang W; Xu Y Front Endocrinol (Lausanne); 2023; 14():1132194. PubMed ID: 36967805 [TBL] [Abstract][Full Text] [Related]
4. Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy. Wang N; Ding L; Liu D; Zhang Q; Zheng G; Xia X; Xiong S Front Endocrinol (Lausanne); 2022; 13():918605. PubMed ID: 35957838 [TBL] [Abstract][Full Text] [Related]
5. Exploring the relationship between pyroptosis, infiltrating immune cells and Kawasaki disease with resistance to intravenous immunoglobulin (IVIG) via bioinformatic analysis. Xie Y; Han B Immunobiology; 2022 Sep; 227(5):152261. PubMed ID: 36029669 [TBL] [Abstract][Full Text] [Related]
6. Sex bias in celiac disease: XWAS and monocyte eQTLs in women identify TMEM187 as a functional candidate gene. Hernangomez-Laderas A; Cilleros-Portet A; Martínez Velasco S; Marí S; Legarda M; González-García BP; Tutau C; García-Santisteban I; Irastorza I; Fernandez-Jimenez N; Bilbao JR Biol Sex Differ; 2023 Dec; 14(1):86. PubMed ID: 38072919 [TBL] [Abstract][Full Text] [Related]
7. A Combined mRNA- and miRNA-Sequencing Approach Reveals miRNAs as Potential Regulators of the Small Intestinal Transcriptome in Celiac Disease. Tan IL; Barisani D; Panceri R; Modderman R; Visschedijk M; Weersma RK; Wijmenga C; Jonkers I; Coutinho de Almeida R; Withoff S Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768815 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of pyroptosis-related genes in the hippocampus of patients with Alzheimer's disease. Xia P; Ma H; Chen J; Liu Y; Cui X; Wang C; Zong S; Wang L; Liu Y; Lu Z BMC Med Genomics; 2023 Mar; 16(1):56. PubMed ID: 36918839 [TBL] [Abstract][Full Text] [Related]
10. Immune-pyroptosis-related genes predict the prognosis of kidney renal clear cell carcinoma. Zhang M; Liu YF; Gao Y; Zhao C; Chen M; Pan KH Transl Oncol; 2023 Aug; 34():101693. PubMed ID: 37315507 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive analysis of key m5C modification-related genes in type 2 diabetes. Song Y; Jiang Y; Shi L; He C; Zhang W; Xu Z; Yang M; Xu Y Front Genet; 2022; 13():1015879. PubMed ID: 36276976 [No Abstract] [Full Text] [Related]
12. Development and validation of a pyroptosis-related genes signature for risk stratification in gliomas. Sun P; Wang X; Zhong J; Yu D; Xuan H; Xu T; Song D; Yang C; Wang P; Liu Y; Meng X; Cai J Front Genet; 2023; 14():1087563. PubMed ID: 36861130 [No Abstract] [Full Text] [Related]
13. Transcriptomics confirms IRF1 as a key regulator of pyroptosis in diabetic retinopathy. Xian Y; Wang X; Yu Y; Chen X Biochem Biophys Res Commun; 2024 May; 709():149760. PubMed ID: 38554602 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the potential pyroptosis mechanism in psoriasis and experimental validation of NLRP3 in vitro and in vivo. Zhang C; Tang B; Zheng X; Luo Q; Bi Y; Deng H; Yu J; Lu Y; Han L; Chen H; Lu C Int Immunopharmacol; 2023 Nov; 124(Pt A):110811. PubMed ID: 37647679 [TBL] [Abstract][Full Text] [Related]
15. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Zhang X; Chao P; Zhang L; Xu L; Cui X; Wang S; Wusiman M; Jiang H; Lu C Front Immunol; 2023; 14():1030198. PubMed ID: 37063851 [TBL] [Abstract][Full Text] [Related]
16. Exploring celiac disease candidate pathways by global gene expression profiling and gene network cluster analysis. Banaganapalli B; Mansour H; Mohammed A; Alharthi AM; Aljuaid NM; Nasser KK; Ahmad A; Saadah OI; Al-Aama JY; Elango R; Shaik NA Sci Rep; 2020 Oct; 10(1):16290. PubMed ID: 33004927 [TBL] [Abstract][Full Text] [Related]
17. Key Genes Associated with Pyroptosis in Gout and Construction of a miRNA-mRNA Regulatory Network. Bai B; Liu Y; Abudukerimu A; Tian T; Liang M; Li R; Sun Y Cells; 2022 Oct; 11(20):. PubMed ID: 36291136 [TBL] [Abstract][Full Text] [Related]
18. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Kong C; Zhu Y; Xie X; Wu J; Qian M Front Immunol; 2023; 14():1184700. PubMed ID: 37359526 [TBL] [Abstract][Full Text] [Related]
19. Bioinformatic analysis of underlying mechanisms of Kawasaki disease via Weighted Gene Correlation Network Analysis (WGCNA) and the Least Absolute Shrinkage and Selection Operator method (LASSO) regression model. Xie Y; Shi H; Han B BMC Pediatr; 2023 Feb; 23(1):90. PubMed ID: 36829193 [TBL] [Abstract][Full Text] [Related]
20. Identification of pyroptosis-related lncRNA signature and AC005253.1 as a pyroptosis-related oncogene in prostate cancer. Yu J; Tang R; Li J Front Oncol; 2022; 12():991165. PubMed ID: 36248980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]