These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 37488748)
1. Deep learning-based analysis of infrared fundus photography for automated diagnosis of diabetic retinopathy with cataracts. Xue W; Zhang J; Ma Y; Hou J; Xiao F; Feng R; Zhao R; Zou H J Cataract Refract Surg; 2023 Oct; 49(10):1043-1048. PubMed ID: 37488748 [TBL] [Abstract][Full Text] [Related]
2. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software. Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471 [No Abstract] [Full Text] [Related]
3. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425 [TBL] [Abstract][Full Text] [Related]
5. Automated detection of severe diabetic retinopathy using deep learning method. Zhang X; Li F; Li D; Wei Q; Han X; Zhang B; Chen H; Zhang Y; Mo B; Hu B; Ding D; Li X; Yu W; Chen Y Graefes Arch Clin Exp Ophthalmol; 2022 Mar; 260(3):849-856. PubMed ID: 34591173 [TBL] [Abstract][Full Text] [Related]
6. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of AI-enhanced non-mydriatic fundus photography for diabetic retinopathy screening. Hu CL; Wang YC; Wu WF; Xi Y Photodiagnosis Photodyn Ther; 2024 Oct; 49():104331. PubMed ID: 39245303 [TBL] [Abstract][Full Text] [Related]
8. Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening. Hsieh YT; Chuang LM; Jiang YD; Chang TJ; Yang CM; Yang CH; Chan LW; Kao TY; Chen TC; Lin HC; Tsai CH; Chen M J Formos Med Assoc; 2021 Jan; 120(1 Pt 1):165-171. PubMed ID: 32307321 [TBL] [Abstract][Full Text] [Related]
9. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy. Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of deep learning-based artificial intelligence models in screening and referring patients with diabetic retinopathy and glaucoma. Surya J; Garima ; Pandy N; Hyungtaek Rim T; Lee G; Priya MNS; Subramanian B; Raman R Indian J Ophthalmol; 2023 Aug; 71(8):3039-3045. PubMed ID: 37530278 [TBL] [Abstract][Full Text] [Related]
11. [Use of artificial intelligence in screening for diabetic retinopathy at a tertiary diabetes center]. Paul S; Tayar A; Morawiec-Kisiel E; Bohl B; Großjohann R; Hunfeld E; Busch M; Pfeil JM; Dähmcke M; Brauckmann T; Eilts S; Bründer MC; Grundel M; Grundel B; Tost F; Kuhn J; Reindel J; Kerner W; Stahl A Ophthalmologie; 2022 Jul; 119(7):705-713. PubMed ID: 35080640 [TBL] [Abstract][Full Text] [Related]
12. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review. Farahat Z; Zrira N; Souissi N; Bennani Y; Bencherif S; Benamar S; Belmekki M; Ngote MN; Megdiche K Surv Ophthalmol; 2024; 69(5):707-721. PubMed ID: 38885761 [TBL] [Abstract][Full Text] [Related]
13. Automated diabetic retinopathy imaging in Indian eyes: a pilot study. Roy R; Lobo A; Pal BP; Oliveira CM; Raman R; Sharma T Indian J Ophthalmol; 2014 Dec; 62(12):1121-4. PubMed ID: 25579354 [TBL] [Abstract][Full Text] [Related]
14. Artificial intelligence-based screening for diabetic retinopathy at community hospital. He J; Cao T; Xu F; Wang S; Tao H; Wu T; Sun L; Chen J Eye (Lond); 2020 Mar; 34(3):572-576. PubMed ID: 31455902 [TBL] [Abstract][Full Text] [Related]
15. [Using artificial intelligence as an initial triage strategy in diabetic retinopathy screening program in China]. Li ZX; Zhang J; Fong N; He MG Zhonghua Yi Xue Za Zhi; 2020 Dec; 100(48):3835-3840. PubMed ID: 33371627 [No Abstract] [Full Text] [Related]
18. Effect of simulated cataract on the accuracy of artificial intelligence in detecting diabetic retinopathy in color fundus photos. Crane AB; Choudhry HS; Dastjerdi MH Indian J Ophthalmol; 2024 Jan; 72(Suppl 1):S42-S45. PubMed ID: 38131541 [TBL] [Abstract][Full Text] [Related]
19. A new ultra-wide-field fundus dataset to diabetic retinopathy grading using hybrid preprocessing methods. Liu H; Teng L; Fan L; Sun Y; Li H Comput Biol Med; 2023 May; 157():106750. PubMed ID: 36931202 [TBL] [Abstract][Full Text] [Related]
20. EyeArt artificial intelligence analysis of diabetic retinopathy in retinal screening events. Vought R; Vought V; Shah M; Szirth B; Bhagat N Int Ophthalmol; 2023 Dec; 43(12):4851-4859. PubMed ID: 37847478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]