These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37489034)

  • 1. A dual-band hydrogen sensor based on Tamm plasmon polaritons.
    Zhang K; Chen Z; Li H; Yi Z; Liu Y; Wu X
    Phys Chem Chem Phys; 2023 Aug; 25(30):20697-20705. PubMed ID: 37489034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Optical Fiber Refractive Index Sensor Based on the Hybrid Mode of Tamm and Surface Plasmon Polaritons.
    Zhang X; Zhu XS; Shi YW
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractive index sensor based on a Tamm Fabry-Perot hybrid resonance.
    Das D; Boyer P; Salvi J
    Appl Opt; 2021 Jun; 60(16):4738-4745. PubMed ID: 34143039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene.
    Mehdi Keshavarz M; Alighanbari A
    Appl Opt; 2019 May; 58(13):3604-3612. PubMed ID: 31044859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the potential of broadband Tamm plasmon resonance for enhanced photodetection.
    Poddar K; Sinha R; Jana B; Chatterjee S; Mukherjee R; Maity AR; Kumar S; Maji PS
    Appl Opt; 2023 Oct; 62(30):8190-8196. PubMed ID: 38038117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gyroidal graphene/porous silicon array for exciting optical Tamm state as optical sensor.
    Zaky ZA; Aly AH
    Sci Rep; 2021 Sep; 11(1):19389. PubMed ID: 34588484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton.
    Wu F; Xiao S
    Opt Express; 2023 Feb; 31(4):5722-5735. PubMed ID: 36823845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectric-Dielectric-Metal Three-Layer Film Material.
    Liu B; Wu P; Zhu H; Lv L
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-channel graphene-based perfect absorbers utilizing Tamm plasmon and Fabry-Perot resonances.
    Orojloo MH; Jabbari M; Solooki Nejad G; Sohrabi F
    Opt Express; 2024 Feb; 32(5):8459-8472. PubMed ID: 38439501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance optical sensing based on electromagnetically induced transparency-like effect in Tamm plasmon multilayer structures.
    Du B; Li Y; Yang D; Lu H
    Appl Opt; 2019 Jun; 58(17):4569-4574. PubMed ID: 31251273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method.
    Plikusienė I; Bužavaitė-Vertelienė E; Mačiulis V; Valavičius A; Ramanavičienė A; Balevičius Z
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons.
    Rahman SS; Klein T; Klembt S; Gutowski J; Hommel D; Sebald K
    Sci Rep; 2016 Oct; 6():34392. PubMed ID: 27698359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system.
    Hu J; Liu W; Xie W; Zhang W; Yao E; Zhang Y; Zhan Q
    Opt Lett; 2019 Nov; 44(22):5642-5645. PubMed ID: 31730127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of bound states in the continuum in dual-band perfect absorbers.
    Gao E; Li H; Liu Z; Xiong C; Liu C; Ruan B; Li M; Zhang B
    Opt Express; 2022 Apr; 30(9):14817-14827. PubMed ID: 35473217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral Engineering of Tamm Plasmon Resonances in Dielectric Nanoporous Photonic Crystal Sensors.
    Tran HNQ; Le NDA; Le QN; Law CS; Lim SY; Abell AD; Santos A
    ACS Appl Mater Interfaces; 2021 Oct; ():. PubMed ID: 34664952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure.
    Hu J; Yao E; Xie W; Liu W; Li D; Lu Y; Zhan Q
    Opt Express; 2019 Jun; 27(13):18642-18652. PubMed ID: 31252804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Channel High-Performance Absorber Based on SiC-Photonic Crystal Heterostructure-SiC Structure.
    Han J; Jiang J; Wu T; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers.
    He M; Nolen JR; Nordlander J; Cleri A; Lu G; Arnaud T; McIlwaine NS; Diaz-Granados K; Janzen E; Folland TG; Edgar JH; Maria JP; Caldwell JD
    Adv Mater; 2023 May; 35(20):e2209909. PubMed ID: 36843308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation.
    Zaky ZA; Ahmed AM; Shalaby AS; Aly AH
    Sci Rep; 2020 Jun; 10(1):9736. PubMed ID: 32546751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region.
    Ahmed AM; Mehaney A
    Sci Rep; 2019 May; 9(1):6973. PubMed ID: 31061422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.