BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37489043)

  • 1. Discovery of novel arylamide derivatives containing piperazine moiety as inhibitors of tubulin polymerisation with potent liver cancer inhibitory activity.
    Shi XY; Jiao H; Zhang JK; Tian XY; Guo DF; Gao J; Jia MQ; Song J; Zhang SY; Fu XJ; Tang HW
    J Enzyme Inhib Med Chem; 2023 Dec; 38(1):2237701. PubMed ID: 37489043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of N-benzylarylamide derivatives as novel tubulin polymerization inhibitors capable of activating the Hippo pathway.
    Song J; Wang SH; Song CH; Zhang WX; Zhu JX; Tian XY; Fu XJ; Xu Y; Jin CY; Zhang SY
    Eur J Med Chem; 2022 Oct; 240():114583. PubMed ID: 35834904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, biological evaluation and molecular docking investigation of new sulphonamide derivatives bearing naphthalene moiety as potent tubulin polymerisation inhibitors.
    Wang G; Fan M; Liu W; He M; Li Y; Peng Z
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1402-1410. PubMed ID: 34157927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of novel N-benzylarylamide-dithiocarbamate based derivatives as dual inhibitors of tubulin polymerization and LSD1 that inhibit gastric cancers.
    Yuan XY; Song CH; Liu XJ; Wang X; Jia MQ; Wang W; Liu WB; Fu XJ; Jin CY; Song J; Zhang SY
    Eur J Med Chem; 2023 Apr; 252():115281. PubMed ID: 36940611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of novel coumarin-indole derivatives as tubulin polymerization inhibitors with potent anti-gastric cancer activities.
    Song J; Guan YF; Liu WB; Song CH; Tian XY; Zhu T; Fu XJ; Qi YQ; Zhang SY
    Eur J Med Chem; 2022 Aug; 238():114467. PubMed ID: 35605363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis and evaluation of novel bis-substituted aromatic amide dithiocarbamate derivatives as colchicine site tubulin polymerization inhibitors with potent anticancer activities.
    Sun YX; Song J; Kong LJ; Sha BB; Tian XY; Liu XJ; Hu T; Chen P; Zhang SY
    Eur J Med Chem; 2022 Feb; 229():114069. PubMed ID: 34971875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and evaluation of dihydro-1
    Xu S; Sun Y; Wang P; Tan Y; Shi L; Chen J
    J Enzyme Inhib Med Chem; 2023 Dec; 38(1):2247579. PubMed ID: 37587873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site.
    Wang G; Liu W; Gong Z; Huang Y; Li Y; Peng Z
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):139-144. PubMed ID: 31724435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and biological evaluation of novel thiazole-naphthalene derivatives as potential anticancer agents and tubulin polymerisation inhibitors.
    Wang G; Liu W; Fan M; He M; Li Y; Peng Z
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1694-1702. PubMed ID: 34309466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel colchicine site tubulin polymerisation inhibitors.
    Fu DJ; Liu SM; Li FH; Yang JJ; Li J
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):1050-1059. PubMed ID: 32299262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a novel Coumarin-Dihydroquinoxalone derivative MY-673 as a tubulin polymerization inhibitor capable of inhibiting the ERK pathway with potent anti-gastric cancer activities.
    Song J; Wang SY; Wang X; Jia MQ; Tian XY; Fu XJ; Jin CY; Zhang SY
    Bioorg Chem; 2023 Aug; 137():106580. PubMed ID: 37149948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site.
    Eissa IH; Dahab MA; Ibrahim MK; Alsaif NA; Alanazi AZ; Eissa SI; Mehany ABM; Beauchemin AM
    Bioorg Chem; 2021 Jul; 112():104965. PubMed ID: 34020238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells.
    Malebari AM; Fayne D; Nathwani SM; O'Connell F; Noorani S; Twamley B; O'Boyle NM; O'Sullivan J; Zisterer DM; Meegan MJ
    Eur J Med Chem; 2020 Mar; 189():112050. PubMed ID: 31954879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of tertiary amide derivatives incorporating benzothiazole moiety as anti-gastric cancer agents in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway.
    Song J; Gao QL; Wu BW; Zhu T; Cui XX; Jin CJ; Wang SY; Wang SH; Fu DJ; Liu HM; Zhang SY; Zhang YB; Li YC
    Eur J Med Chem; 2020 Oct; 203():112618. PubMed ID: 32682200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and bioevaluation of imidazo [1,2-a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities.
    Deng B; Sun Z; Wang Y; Mai R; Yang Z; Ren Y; Liu J; Huang J; Ma Z; Chen T; Zeng C; Chen J
    Bioorg Med Chem; 2022 Dec; 76():117098. PubMed ID: 36455508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, molecular docking and biological evaluation of 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as novel potential tubulin assembling inhibitors.
    Wang YT; Cai XC; Shi TQ; Zhang YL; Wang ZC; Liu CH; Zhu HL
    Chem Biol Drug Des; 2017 Jul; 90(1):112-118. PubMed ID: 28032450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a chiral fluorinated azetidin-2-one as a tubulin polymerisation inhibitor with potent antitumour efficacy.
    Tang H; Cheng J; Liang Y; Wang Y
    Eur J Med Chem; 2020 Jul; 197():112323. PubMed ID: 32339854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of S-aryl dithiocarbamate derived novel antiproliferative compound exhibiting tubulin bundling.
    Jaiswal S; Parida SK; Murarka S; Singh P
    Bioorg Med Chem; 2022 Aug; 68():116874. PubMed ID: 35716589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biological evaluation of novel shikonin-benzo[b]furan derivatives as tubulin polymerization inhibitors targeting the colchicine binding site.
    Shao YY; Yin Y; Lian BP; Leng JF; Xia YZ; Kong LY
    Eur J Med Chem; 2020 Mar; 190():112105. PubMed ID: 32035399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of new 3-phenyl-1H-indole-2-carbohydrazide derivatives and their structure-activity relationships as potent tubulin inhibitors and anticancer agents: A combined in silico, in vitro and synthetic study.
    Saruengkhanphasit R; Butkinaree C; Ornnork N; Lirdprapamongkol K; Niwetmarin W; Svasti J; Ruchirawat S; Eurtivong C
    Bioorg Chem; 2021 May; 110():104795. PubMed ID: 33730670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.