These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37489470)

  • 1. A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.
    Nadkarni R; Clark DP; Allphin AJ; Badea CT
    Tomography; 2023 Jul; 9(4):1286-1302. PubMed ID: 37489470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating deep learning strategies for fast denoising of 5D cardiac photon-counting micro-CT images.
    Nadkarni R; Clark DP; Allphin AJ; Badea CT
    Phys Med Biol; 2024 Sep; ():. PubMed ID: 39321848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material decomposition from photon-counting CT using a convolutional neural network and energy-integrating CT training labels.
    Nadkarni R; Allphin A; Clark DP; Badea CT
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35767986
    [No Abstract]   [Full Text] [Related]  

  • 4. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCR toolkit: A GPU-based toolkit for multi-channel reconstruction of preclinical and clinical x-ray CT data.
    Clark DP; Badea CT
    Med Phys; 2023 Aug; 50(8):4775-4796. PubMed ID: 37285215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locally linear transform based three-dimensional gradient
    Wang Q; Wu W; Deng S; Zhu Y; Yu H
    Med Phys; 2020 Oct; 47(10):4810-4826. PubMed ID: 32740956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multichannel block-matching denoising algorithm for spectral photon-counting CT images.
    Harrison AP; Xu Z; Pourmorteza A; Bluemke DA; Mollura DJ
    Med Phys; 2017 Jun; 44(6):2447-2452. PubMed ID: 28332211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-silicon photon-counting x-ray projection denoising through reinforcement learning.
    Tanveer MS; Wiedeman C; Li M; Shi Y; De Man B; Maltz JS; Wang G
    J Xray Sci Technol; 2024; 32(2):173-205. PubMed ID: 38217633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKAID-Net: Prior Knowledge Aware Iterative Denoising Neural Network for Photon Counting Detector CT.
    Chang S; Marsh JF; Koons EK; Gong H; McCollough CH; Leng S
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37063492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers.
    Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y
    Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
    Liu J; Yang Y; Wernick MN; Pretorius PH; King MA
    Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material decomposition with prior knowledge aware iterative denoising (MD-PKAID).
    Tao S; Rajendran K; McCollough CH; Leng S
    Phys Med Biol; 2018 Sep; 63(19):195003. PubMed ID: 30136655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denoising Medical Images Using Machine Learning, Deep Learning Approaches: A Survey.
    Arshaghi A; Ashourian M; Ghabeli L
    Curr Med Imaging; 2021; 17(5):578-594. PubMed ID: 33213331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited parameter denoising for low-dose X-ray computed tomography using deep reinforcement learning.
    Patwari M; Gutjahr R; Raupach R; Maier A
    Med Phys; 2022 Jul; 49(7):4540-4553. PubMed ID: 35362172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.