These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37489799)

  • 1. Protein fouling during constant-flux virus filtration: Mechanisms and modeling.
    Peles J; Cacace B; Carbrello C; Giglia S; Zydney AL
    Biotechnol Bioeng; 2023 Nov; 120(11):3357-3367. PubMed ID: 37489799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of membrane structure on the filtrate flux during monoclonal antibody filtration through virus retentive membranes.
    Billups M; Minervini M; Holstein M; Feroz H; Ranjan S; Hung J; Bao H; Li ZJ; Ghose S; Zydney AL
    Biotechnol Prog; 2022 Mar; 38(2):e3231. PubMed ID: 34994527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of the Impact of Protein on Virus Retention for Different Virus Removal Filters.
    Afzal MA; Peles J; Zydney AL
    Membranes (Basel); 2024 Jul; 14(7):. PubMed ID: 39057666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-up of Sterilizing-grade Membrane Filters from Discs to Pleated Cartridges: Effects of Operating Parameters and Solution Properties.
    Kumar A; Martin J; Kuriyel R
    PDA J Pharm Sci Technol; 2015; 69(1):74-87. PubMed ID: 25691716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of protein fouling on nanoparticle capture within the Viresolve® Pro and Viresolve® NFP virus removal membranes.
    Fallahianbijan F; Giglia S; Carbrello C; Bell D; Zydney AL
    Biotechnol Bioeng; 2019 Sep; 116(9):2285-2291. PubMed ID: 31081123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of protein fouling on filtrate flux and virus breakthrough behaviors during virus filtration process.
    Suh D; Jin H; Park H; Lee C; Cho YH; Baek Y
    Biotechnol Bioeng; 2023 Jul; 120(7):1891-1901. PubMed ID: 37144573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein fouling of virus filtration membranes: effects of membrane orientation and operating conditions.
    Syedain ZH; Bohonak DM; Zydney AL
    Biotechnol Prog; 2006; 22(4):1163-9. PubMed ID: 16889394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing virus filtration for continuous processing using serial filtration at high area ratio.
    Giglia S; Cacace B; McCoskey J; Tierson M; Carbrello C; Miller C; Hersey J
    Biotechnol Bioeng; 2024 Nov; 121(11):3502-3513. PubMed ID: 39080965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical Flux and Fouling Analysis of PVDF-Mixed Matrix Membranes for Reclamation of Refinery-Produced Wastewater: Effect of Mixed Liquor Suspended Solids Concentration and Aeration.
    Yuliwati E; Ismail AF; Othman MHD; Shirazi MMA
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-based analysis of virus removal filter fouling using fractionated protein aggregates.
    Tsukamoto K; Hamamoto R; Oguri R; Miura A; Iwasaki T; Sukegawa T
    Biotechnol Prog; 2024; 40(1):e3391. PubMed ID: 37733879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration.
    Ho CC; Zydney AL
    J Colloid Interface Sci; 2000 Dec; 232(2):389-399. PubMed ID: 11097775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling cake buildup under TMP-step filtration in a membrane bioreactor: cake compressibility is significant.
    Bugge TV; Jørgensen MK; Christensen ML; Keiding K
    Water Res; 2012 Sep; 46(14):4330-8. PubMed ID: 22748327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of proteins and protein fouling on virus retention during virus removal filtration.
    Afzal MA; Zydney AL
    Biotechnol Bioeng; 2024 Feb; 121(2):710-718. PubMed ID: 37994529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A crossflow filtration system for constant permeate flux membrane fouling characterization.
    Miller DJ; Paul DR; Freeman BD
    Rev Sci Instrum; 2013 Mar; 84(3):035003. PubMed ID: 23556842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of intermolecular interactions on monoclonal antibody filtration through virus removal membranes.
    Billups M; Minervini M; Holstein M; Feroz H; Ranjan S; Hung J; Zydney AL
    Biotechnol J; 2023 Dec; 18(12):e2300265. PubMed ID: 37641433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fouling Behavior during Sterile Filtration of Different Glycoconjugate Serotypes Used in Conjugate Vaccines.
    Emami P; Fallahianbijan F; Dinse E; Motevalian SP; Conde BC; Reilly K; Zydney AL
    Pharm Res; 2021 Jan; 38(1):155-163. PubMed ID: 33438097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Organic and Inorganic Foulant Interaction Using Modified Fouling Models in Constant Flux Dead-End Operation with Microfiltration Membranes.
    Qasim M; Akbar A; Khan IA; Ali M; Lee EJ; Lee KH
    Membranes (Basel); 2023 Oct; 13(11):. PubMed ID: 37999339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of flux on the clearance of minute virus of mice during constant flux virus filtration.
    Fan R; Namila F; Sansongko D; Wickramasinghe SR; Jin M; Kanani D; Qian X
    Biotechnol Bioeng; 2021 Sep; 118(9):3511-3521. PubMed ID: 33811657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of factors affecting sodium alginate fouling mechanisms in a microfiltration process under non-constant-flux and non-constant-pressure conditions.
    Liu YJ
    Water Sci Technol; 2023 Jul; 88(1):169-184. PubMed ID: 37452541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.