These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37489860)

  • 21. Azobenzene-based solar thermal fuels: design, properties, and applications.
    Dong L; Feng Y; Wang L; Feng W
    Chem Soc Rev; 2018 Oct; 47(19):7339-7368. PubMed ID: 30168543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual screening of norbornadiene-based molecular solar thermal energy storage systems using a genetic algorithm.
    Ree N; Koerstz M; Mikkelsen KV; Jensen JH
    J Chem Phys; 2021 Nov; 155(18):184105. PubMed ID: 34773961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Status and challenges for molecular solar thermal energy storage system based devices.
    Wang Z; Hölzel H; Moth-Poulsen K
    Chem Soc Rev; 2022 Aug; 51(17):7313-7326. PubMed ID: 35726574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.
    Wang Z; Udmark J; Börjesson K; Rodrigues R; Roffey A; Abrahamsson M; Nielsen MB; Moth-Poulsen K
    ChemSusChem; 2017 Aug; 10(15):3049-3055. PubMed ID: 28644559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.
    Kucharski TJ; Ferralis N; Kolpak AM; Zheng JO; Nocera DG; Grossman JC
    Nat Chem; 2014 May; 6(5):441-7. PubMed ID: 24755597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient and Robust Molecular Solar Thermal Fabric for Personal Thermal Management.
    Fei L; Zhang ZY; Tan Y; Ye T; Dong D; Yin Y; Li T; Wang C
    Adv Mater; 2023 Apr; 35(16):e2209768. PubMed ID: 36738144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Push-Pull Bis-Norbornadienes for Solar Thermal Energy Storage.
    Weber RR; Stindt CN; van der Harten AMJ; Feringa BL
    Chemistry; 2024 Jun; 30(35):e202400482. PubMed ID: 38519425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage.
    Dai Z; Gao Y; Wang C; Wu D; Jiang Z; She X; Ding Y; Zhang X; Zhao D
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26863-26871. PubMed ID: 37230959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Tuning of Photoswitches for Solar Energy Storage.
    Losantos R; Sampedro D
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34206445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visible light activated energy storage in solid-state Azo-BF
    Qiu Q; Qi Q; Usuba J; Lee K; Aprahamian I; Han GGD
    Chem Sci; 2023 Oct; 14(41):11359-11364. PubMed ID: 37886079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamical Effects of Solvation on Norbornadiene/Quadricyclane Systems.
    Hillers-Bendtsen AE; Todarwal Y; Norman P; Mikkelsen KV
    J Phys Chem A; 2024 Apr; 128(13):2602-2610. PubMed ID: 38511966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic limits to energy conversion in solar thermal fuels.
    Strubbe DA; Grossman JC
    J Phys Condens Matter; 2019 Jan; 31(3):034002. PubMed ID: 30523877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fused Bis(hemi-indigo): Broad-Range Wavelength-Independent Photoswitches.
    Berdnikova DV; Kriesche BM; Paululat T; Hofer TS
    Chemistry; 2022 Dec; 28(71):e202202752. PubMed ID: 36134500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Norbornadiene-Quadricyclane Photoswitches with Enhanced Solar Spectrum Match.
    Aslam AS; Muhammad LM; Erbs Hillers-Bendtsen A; Mikkelsen KV; Moth-Poulsen K
    Chemistry; 2024 Aug; 30(46):e202401430. PubMed ID: 38825835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multilayer Polypyrrole Nanosheets with Self-Organized Surface Structures for Flexible and Efficient Solar-Thermal Energy Conversion.
    Wang X; Liu Q; Wu S; Xu B; Xu H
    Adv Mater; 2019 May; 31(19):e1807716. PubMed ID: 30920701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemically Triggered Energy Release from an Azothiophene-Based Molecular Solar Thermal System.
    Franz E; Kunz A; Oberhof N; Heindl AH; Bertram M; Fusek L; Taccardi N; Wasserscheid P; Dreuw A; Wegner HA; Brummel O; Libuda J
    ChemSusChem; 2022 Sep; 15(18):e202200958. PubMed ID: 35762102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the Simulation of Thermal Isomerization of Molecular Photoswitches in Biological Systems.
    Bakhtiiari A; Costa GJ; Liang R
    J Chem Theory Comput; 2023 Sep; 19(18):6484-6499. PubMed ID: 37607344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.
    Zhang L; Li R; Tang B; Wang P
    Nanoscale; 2016 Aug; 8(30):14600-7. PubMed ID: 27430282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.