BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37489868)

  • 1. The brown planthopper NlDHRS11 is involved in the detoxification of rice secondary compounds.
    Yang J; Yan SY; Li GC; Guo H; Tang R; Ma R; Cai QN
    Pest Manag Sci; 2023 Dec; 79(12):4828-4838. PubMed ID: 37489868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae.
    Kang K; Yue L; Xia X; Liu K; Zhang W
    Metabolomics; 2019 Apr; 15(4):62. PubMed ID: 30976994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic responses of brown planthoppers to IR56 resistant rice cultivar containing multiple resistance genes.
    Yue L; Kang K; Zhang W
    J Insect Physiol; 2019; 113():67-76. PubMed ID: 30291858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.
    Wang Y; Guo H; Li H; Zhang H; Miao X
    BMC Genomics; 2012 Dec; 13():687. PubMed ID: 23228240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation.
    Li C; Luo C; Zhou Z; Wang R; Ling F; Xiao L; Lin Y; Chen H
    BMC Plant Biol; 2017 Feb; 17(1):57. PubMed ID: 28245796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants.
    Yang Z; Zhang F; He Q; He G
    Arch Insect Biochem Physiol; 2005 Jun; 59(2):59-66. PubMed ID: 15898115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic and transcriptomic responses of two Nilaparvata lugens populations to the Mudgo rice containing Bph1.
    Wan PJ; Zhou RN; Nanda S; He JC; Yuan SY; Wang WX; Lai FX; Fu Q
    Sci Rep; 2019 Oct; 9(1):14049. PubMed ID: 31575938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Responses of
    Nanda S; Wan PJ; Yuan SY; Lai FX; Wang WX; Fu Q
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30551584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencing of miR156 confers enhanced resistance to brown planthopper in rice.
    Ge Y; Han J; Zhou G; Xu Y; Ding Y; Shi M; Guo C; Wu G
    Planta; 2018 Oct; 248(4):813-826. PubMed ID: 29934776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive transcriptomic analysis of three varieties with different brown planthopper-resistance identifies leaf sheath lncRNAs in rice.
    Liu K; Ma X; Zhao L; Lai X; Chen J; Lang X; Han Q; Wan X; Li C
    BMC Plant Biol; 2023 Jul; 23(1):367. PubMed ID: 37480003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome and Metabolome Profiling Reveal the Resistance Mechanisms of Rice against Brown Planthopper.
    Zhang Q; Li T; Gao M; Ye M; Lin M; Wu D; Guo J; Guan W; Wang J; Yang K; Zhu L; Cheng Y; Du B; He G
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35456901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid profiles reveal different responses to brown planthopper infestation for pest susceptible and resistant rice plants.
    Zhang J; Li Y; Guo J; Du B; He G; Zhang Y; Chen R; Li J
    Metabolomics; 2018 Sep; 14(9):120. PubMed ID: 30830454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.
    Lv W; Du B; Shangguan X; Zhao Y; Pan Y; Zhu L; He Y; He G
    BMC Genomics; 2014 Aug; 15(1):674. PubMed ID: 25109872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses.
    Uawisetwathana U; Chevallier OP; Xu Y; Kamolsukyeunyong W; Nookaew I; Somboon T; Toojinda T; Vanavichit A; Goodacre R; Elliott CT; Karoonuthaisiri N
    Metabolomics; 2019 Nov; 15(12):151. PubMed ID: 31741127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Ferulic Acid with Glutathione S-Transferase and Carboxylesterase Genes in the Brown Planthopper, Nilaparvata lugens.
    Yang J; Sun XQ; Yan SY; Pan WJ; Zhang MX; Cai QN
    J Chem Ecol; 2017 Jul; 43(7):693-702. PubMed ID: 28647840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice.
    Ren J; Gao F; Wu X; Lu X; Zeng L; Lv J; Su X; Luo H; Ren G
    Sci Rep; 2016 Nov; 6():37645. PubMed ID: 27876888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling
    Rout P; Ravindranath N; Gaikwad D; Nanda S
    Curr Issues Mol Biol; 2023 Aug; 45(8):6790-6803. PubMed ID: 37623248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining next-generation sequencing and single-molecule sequencing to explore brown plant hopper responses to contrasting genotypes of japonica rice.
    Zhang J; Guan W; Huang C; Hu Y; Chen Y; Guo J; Zhou C; Chen R; Du B; Zhu L; Huanhan D; He G
    BMC Genomics; 2019 Aug; 20(1):682. PubMed ID: 31464583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression Analysis Reveals Differentially Expressed Genes in BPH and WBPH Associated with Resistance in Rice RILs Derived from a Cross between RP2068 and TN1.
    Anand R; Divya D; Mazumdar-Leighton S; Bentur JS; Nair S
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The control of the brown planthopper by the rice Bph14 gene is affected by nitrogen.
    Sun Z; Shi JH; Fan T; Wang C; Liu L; Jin H; Foba CN; Wang MQ
    Pest Manag Sci; 2020 Nov; 76(11):3649-3656. PubMed ID: 32418333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.