These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37489912)

  • 1. A transfer matrix for the input impedance of weakly tapered, dissipative cones as of wind instruments (L).
    Grothe T; Baumgart J; Nederveen CJ
    J Acoust Soc Am; 2023 Jul; 154(1):463-466. PubMed ID: 37489912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative time-domain one-dimensional model for viscothermal acoustic propagation in wind instruments.
    Thibault A; Chabassier J
    J Acoust Soc Am; 2021 Aug; 150(2):1165. PubMed ID: 34470269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power law transfer matrix and the acoustic impedance of Gabriel's Horn.
    Brown WR
    J Acoust Soc Am; 2017 Sep; 142(3):1384. PubMed ID: 28964078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniformly valid solution for acoustic propagation in weakly tapered circular waveguides: liquid jet example.
    Lonzaga JB; Thiessen DB; Marston PL
    J Acoust Soc Am; 2008 Jul; 124(1):151-60. PubMed ID: 18646962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of bending portions of the air column on the acoustical resonances of a wind instrument.
    Félix S; Dalmont JP; Nederveen CJ
    J Acoust Soc Am; 2012 May; 131(5):4164-72. PubMed ID: 22559387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analog model for thermoviscous propagation in a cylindrical tube.
    Thompson SC; Gabrielson TB; Warren DM
    J Acoust Soc Am; 2014 Feb; 135(2):585-90. PubMed ID: 25234868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of woodwind instrument toneholes with the finite element method.
    Lefebvre A; Scavone GP
    J Acoust Soc Am; 2012 Apr; 131(4):3153-63. PubMed ID: 22501087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 Apr; 137(4):1877-87. PubMed ID: 25920840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Woodwind instrument design optimization based on impedance characteristics with geometric constraints.
    Ernoult A; Vergez C; Missoum S; Guillemain P; Jousserand M
    J Acoust Soc Am; 2020 Nov; 148(5):2864. PubMed ID: 33261417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations.
    Kausel W; Chatziioannou V; Moore TR; Gorman BR; Rokni M
    J Acoust Soc Am; 2015 Jun; 137(6):3149-62. PubMed ID: 26093406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear frequency shifts in acoustical resonators with varying cross sections.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2009 Mar; 125(3):1310-9. PubMed ID: 19275288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy losses in an acoustical resonator.
    Ilinskii YA; Lipkens B; Zabolotskaya EA
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1859-70. PubMed ID: 11386541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of tapered master gutta-percha cone on apical seal of straight and curved root canals prepared with nickel-titanium rotary files.
    Jafarzadeh M; Yazdizadeh M; Sheikh AF; Hosseini Goosheh SM; Khodadadnejad F; Rohani A
    Dent Res J (Isfahan); 2020; 17(4):287-292. PubMed ID: 33282155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chimney tube in musical acoustics: A textbook-level formulation for students and musicians.
    Saenger KL
    J Acoust Soc Am; 2022 Jul; 152(1):540. PubMed ID: 35931525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete-time modeling of woodwind instrument bores using wave variables.
    van Walstijn M; Campbell M
    J Acoust Soc Am; 2003 Jan; 113(1):575-85. PubMed ID: 12558293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wood for sound.
    Wegst UG
    Am J Bot; 2006 Oct; 93(10):1439-48. PubMed ID: 21642091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between acoustic measurements of brass instruments and one-dimensional models with curved wavefronts and transformed axial coordinates.
    Orduña-Bustamante F; Rendón PL; Martínez-Montejo E
    J Acoust Soc Am; 2017 Oct; 142(4):1717. PubMed ID: 29092571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative to the traveling-wave approach for use in two-port descriptions of acoustic bores.
    Ducasse E
    J Acoust Soc Am; 2002 Dec; 112(6):3031-41. PubMed ID: 12509025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
    Fleischer M; Pinkert S; Mattheus W; Mainka A; Mürbe D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):719-33. PubMed ID: 25416844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear-acoustic effects of asymmetrical undercutting of toneholes of woodwind instruments.
    Gerasimov R
    J Acoust Soc Am; 2024 Oct; 156(4):2644-2655. PubMed ID: 39417656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.