BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37490146)

  • 1. An aggregated understanding of the influence of aqueous ammonia pretreatment on the physical deconstruction of cell walls in sugar beet pulp.
    Xue H; Qin R; Liu Y; Yuan L; Li G
    Bioprocess Biosyst Eng; 2023 Oct; 46(10):1427-1435. PubMed ID: 37490146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous ammonia pretreatment of sugar beet pulp for enhanced enzymatic hydrolysis.
    Li G; He W; Yuan L
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1603-1609. PubMed ID: 28748321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic hydrolysis of ammonia-treated sugar beet pulp.
    Foster BL; Dale BE; Doran-Peterson JB
    Appl Biochem Biotechnol; 2001; 91-93():269-82. PubMed ID: 11963856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous enzymatic hydrolysis of sugar beet pectin and l-arabinose recovery within an integrated biorefinery.
    Cárdenas-Fernández M; Hamley-Bennett C; Leak DJ; Lye GJ
    Bioresour Technol; 2018 Dec; 269():195-202. PubMed ID: 30172183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the efficiency of enzyme utilization for sugar beet pulp hydrolysis.
    Zheng Y; Cheng YS; Yu C; Zhang R; Jenkins BM; VanderGheynst JS
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1531-9. PubMed ID: 22580744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.
    Kharina M; Emelyanov V; Mokshina N; Ibragimova N; Gorshkova T
    Appl Biochem Biotechnol; 2016 May; 179(2):307-20. PubMed ID: 26821256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable production of cellulose nanofiber gels and paper from sugar beet waste using enzymatic pre-treatment.
    Perzon A; Jørgensen B; Ulvskov P
    Carbohydr Polym; 2020 Feb; 230():115581. PubMed ID: 31887882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.
    Bellido C; Infante C; Coca M; González-Benito G; Lucas S; García-Cubero MT
    Bioresour Technol; 2015 Aug; 190():332-8. PubMed ID: 25965949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal secretomes enhance sugar beet pulp hydrolysis.
    Kracher D; Oros D; Yao W; Preims M; Rezic I; Haltrich D; Rezic T; Ludwig R
    Biotechnol J; 2014 Apr; 9(4):483-92. PubMed ID: 24677771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionation of depectinated sugar beet pulp into cellulose, hemicellulose, and lignin with NaOH/urea/H
    Liu Q; Zhu S
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124706. PubMed ID: 37146852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorization of sugar beet pulp to value-added products: A review.
    Usmani Z; Sharma M; Diwan D; Tripathi M; Whale E; Jayakody LN; Moreau B; Thakur VK; Tuohy M; Gupta VK
    Bioresour Technol; 2022 Feb; 346():126580. PubMed ID: 34923076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterisation of cellulose and cell-wall-matrix polysaccharides in variously oxidised sugar-beet pulp preparations differing in viscosity.
    Whale E; Bulling AEK; Fry SC
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127356. PubMed ID: 37838137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.
    Mathew AK; Parameshwaran B; Sukumaran RK; Pandey A
    Bioresour Technol; 2016 Jan; 199():13-20. PubMed ID: 26358144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion.
    Kühnel S; Schols HA; Gruppen H
    Biotechnol Biofuels; 2011 May; 4():14. PubMed ID: 21627804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preparation of soy glycinin/sugar beet pectin complex network gels catalyzed by laccase under weakly acidic conditions.
    Wu L; Hu J; Nie P; Yin Q; Shao D; Wang C; Luo S; Zhao Y; Zhong X; Zheng Z
    J Sci Food Agric; 2023 Jun; 103(8):4131-4142. PubMed ID: 36565301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover.
    Qin L; Liu ZH; Jin M; Li BZ; Yuan YJ
    Bioresour Technol; 2013 Oct; 146():504-511. PubMed ID: 23968841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.
    El-Gendy NSh; Madian HR; Nassar HN; Abu Amr SS
    Recent Pat Biotechnol; 2015; 9(1):50-62. PubMed ID: 26563813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.
    Li M; Wang LJ; Li D; Cheng YL; Adhikari B
    Carbohydr Polym; 2014 Feb; 102():136-43. PubMed ID: 24507265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermomechanically micronized sugar beet pulp: Dissociation mechanism, physicochemical characteristics, and emulsifying properties.
    Lin J; Tang ZS; Brennan CS; Zeng XA
    Food Res Int; 2022 Oct; 160():111675. PubMed ID: 36076386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production.
    Berłowska J; Pielech-Przybylska K; Balcerek M; Dziekońska-Kubczak U; Patelski P; Dziugan P; Kręgiel D
    Biomed Res Int; 2016; 2016():3154929. PubMed ID: 27722169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.