These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37490527)

  • 1. High-Efficiency Separator Capacity-Compensation Strategy Applied to Sodium-Ion Batteries.
    Mao Y; Zhou C; Gong H; Zhang S; Wang X; Liu X; Xiang Q; Sun J
    Small; 2023 Nov; 19(46):e2303259. PubMed ID: 37490527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Sodiation Additive and Its Nuances in the Performance Enhancement of Sodium-Ion Batteries.
    Fernández-Ropero AJ; Zarrabeitia M; Baraldi G; Echeverria M; Rojo T; Armand M; Shanmukaraj D
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11814-11821. PubMed ID: 33650844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries.
    Shanmukaraj D; Kretschmer K; Sahu T; Bao W; Rojo T; Wang G; Armand M
    ChemSusChem; 2018 Sep; 11(18):3286-3291. PubMed ID: 29968282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries.
    Niu YB; Guo YJ; Yin YX; Zhang SY; Wang T; Wang P; Xin S; Guo YG
    Adv Mater; 2020 Aug; 32(33):e2001419. PubMed ID: 32627877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Sodiophilic Amyloid Fibril Modified Separator for Dendrite-Free Sodium-Metal Batteries.
    Wang J; Gao Y; Liu D; Zou G; Li L; Fernandez C; Zhang Q; Peng Q
    Adv Mater; 2024 Mar; 36(11):e2304942. PubMed ID: 37436944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun Flexible Cellulose Acetate-Based Separators for Sodium-Ion Batteries with Ultralong Cycle Stability and Excellent Wettability: The Role of Interface Chemical Groups.
    Chen W; Zhang L; Liu C; Feng X; Zhang J; Guan L; Mi L; Cui S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23883-23890. PubMed ID: 29920205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoothing the Sodium-Metal Anode with a Self-Regulating Alloy Interface for High-Energy and Sustainable Sodium-Metal Batteries.
    Wang L; Shang J; Huang Q; Hu H; Zhang Y; Xie C; Luo Y; Gao Y; Wang H; Zheng Z
    Adv Mater; 2021 Oct; 33(41):e2102802. PubMed ID: 34432922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries.
    Sun Y; Hou R; Xu S; Zhou H; Guo S
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318960. PubMed ID: 38196292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Structural Phase Transitions in Na
    Thangavel R; Han D; Moorthy B; Ganesan BK; Moorthy M; Park Y; Nam KW; Lee YS
    Small Methods; 2022 Feb; 6(2):e2100888. PubMed ID: 35174991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional Separator Enables High-Performance Sodium Metal Batteries in Carbonate-Based Electrolytes.
    Liu H; Zheng X; Du Y; Borrás MC; Wu K; Konstantinov K; Pang WK; Chou S; Liu H; Dou S; Wu C
    Adv Mater; 2024 Feb; 36(5):e2307645. PubMed ID: 37989269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Organo-Fluoro-Rich Anode Electrolyte Interface and Partially Sodiated Hard Carbon Anode for Improved Cycle Life and Practical Sodium-Ion Batteries.
    Lohani H; Kumar A; Kumari P; Ahuja A; Gautam M; Sengupta A; Mitra S
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37793-37803. PubMed ID: 35969193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Initial Coulombic Efficiency of Sodium-Ion Batteries via Highly Active Na
    Hu L; Li J; Zhang Y; Zhang H; Liao M; Han Y; Huang Y; Li Z
    Small; 2023 Nov; 19(46):e2304793. PubMed ID: 37470205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium Rich Vanadium Oxy-Fluorophosphate - Na
    Essehli R; Yahia HB; Amin R; Li M; Morales D; Greenbaum SG; Abouimrane A; Parejiya A; Mahmoud A; Boulahya K; Dixit M; Belharouak I
    Adv Sci (Weinh); 2023 Aug; 10(22):e2301091. PubMed ID: 37202659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Performance of High-Valence Mo
    Meghnani D; Kumar Singh S; Srivastava N; Kumar Tiwari R; Mishra R; Patel A; Tiwari A; Kumar Singh R
    Chemphyschem; 2022 Dec; 23(24):e202200459. PubMed ID: 36074347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Step Synthesis of Three-Dimensional Na
    Zhao L; Liu X; Li J; Diao X; Zhang J
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Fabrication of PET-Based Thermotolerant Separators for Lithium-Ion Batteries with Ion Irradiation Technology.
    Chen L; Gui X; Zhang Q; Hou B; Wu X; Wu S; Zhen L; Mo D; Duan J; Liu J; Yao H
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59422-59431. PubMed ID: 38096428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetric Sodium-Ion Battery Based on Dual-Electron Reactions of NASICON-Structured Na
    Zhou Y; Shao X; Lam KH; Zheng Y; Zhao L; Wang K; Zhao J; Chen F; Hou X
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30328-30335. PubMed ID: 32530260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Protection Engineering of Sodium Nanoparticles toward Dendrite-Free and Long-Life Sodium Metal Battery.
    You S; Ye M; Xiong J; Hu Z; Zhang Y; Yang Y; Li CC
    Small; 2021 Sep; 17(35):e2102400. PubMed ID: 34310031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High power Na
    Sadan MK; Haridas AK; Kim H; Kim C; Cho GB; Cho KK; Ahn JH; Ahn HJ
    Nanoscale Adv; 2020 Nov; 2(11):5166-5170. PubMed ID: 36132030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.