These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37490722)

  • 21. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset.
    Wen X; Cui Z; Jian S
    Accid Anal Prev; 2022 Jul; 172():106689. PubMed ID: 35569279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing Subjective Similarity of Automated Driving Styles to Objective Distance-Based Similarity.
    Kamaraj AV; Lee J; Domeyer JE; Liu SY; Lee JD
    Hum Factors; 2024 May; 66(5):1545-1563. PubMed ID: 36602523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring causes and effects of automated vehicle disengagement using statistical modeling and classification tree based on field test data.
    Wang S; Li Z
    Accid Anal Prev; 2019 Aug; 129():44-54. PubMed ID: 31103878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of varying levels of vehicle automation on drivers' lane changing behaviour.
    Madigan R; Louw T; Merat N
    PLoS One; 2018; 13(2):e0192190. PubMed ID: 29466402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using voice recognition to measure trust during interactions with automated vehicles.
    Deng M; Chen J; Wu Y; Ma S; Li H; Yang Z; Shen Y
    Appl Ergon; 2024 Apr; 116():104184. PubMed ID: 38048717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition.
    Classen S; Mason JR; Hwangbo SW; Sisiopiku V
    Front Neurol; 2021; 12():798762. PubMed ID: 34925223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling takeover behavior in level 3 automated driving via a structural equation model: Considering the mediating role of trust.
    Jin M; Lu G; Chen F; Shi X; Tan H; Zhai J
    Accid Anal Prev; 2021 Jul; 157():106156. PubMed ID: 33957474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards an assistance strategy that reduces unnecessary collision alarms: An examination of the driver's perceived need for assistance.
    Kaß C; Schmidt GJ; Kunde W
    J Exp Psychol Appl; 2019 Jun; 25(2):291-302. PubMed ID: 30035557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Operational design domain of automated vehicles at freeway entrance terminals.
    Ye X; Wang X
    Accid Anal Prev; 2022 Sep; 174():106776. PubMed ID: 35870304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sharing roads with automated vehicles: A questionnaire investigation from drivers', cyclists' and pedestrians' perspectives.
    Li X; Kaye SA; Afghari AP; Oviedo-Trespalacios O
    Accid Anal Prev; 2023 Aug; 188():107093. PubMed ID: 37150131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Driver-initiated take-overs during critical evasion maneuvers in automated driving.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2024 Jan; 194():107362. PubMed ID: 37931430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Greater prosociality toward other human drivers than autonomous vehicles: Human drivers' discriminatory behavior in mixed traffic.
    Sun H; Ge Y; Qu W
    Accid Anal Prev; 2024 Aug; 203():107623. PubMed ID: 38735195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Can the Trust-Change Direction be Measured and Identified During Takeover Transitions in Conditionally Automated Driving? Using Physiological Responses and Takeover-Related Factors.
    Yi B; Cao H; Song X; Wang J; Zhao S; Guo W; Cao D
    Hum Factors; 2024 Apr; 66(4):1276-1301. PubMed ID: 36625335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and evaluation of cooperative human-machine interface for changing lanes in conditional driving automation.
    Muslim H; Kiu Leung C; Itoh M
    Accid Anal Prev; 2022 Sep; 174():106719. PubMed ID: 35660872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use patterns among early adopters of adaptive cruise control.
    Xiong H; Boyle LN; Moeckli J; Dow BR; Brown TL
    Hum Factors; 2012 Oct; 54(5):722-33. PubMed ID: 23156618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles.
    Mahdinia I; Mohammadnazar A; Arvin R; Khattak AJ
    Accid Anal Prev; 2021 Mar; 152():106006. PubMed ID: 33556655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The monitoring requests on young driver's fatigue and take-over performance in prolonged conditional automated driving.
    Yin J; Shao H; Zhang X
    J Safety Res; 2024 Feb; 88():285-292. PubMed ID: 38485370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of highly automated driving on the self-perception of drivers in the context of Conduct-by-Wire.
    Kauer M; Franz B; Maier A; Bruder R
    Ergonomics; 2015; 58(2):321-34. PubMed ID: 25343710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.