These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37490830)

  • 1. Large-stream nitrate retention patterns shift during droughts: Seasonal to sub-daily insights from high-frequency data-model fusion.
    Yang X; Zhang X; Graeber D; Hensley R; Jarvie H; Lorke A; Borchardt D; Li Q; Rode M
    Water Res; 2023 Sep; 243():120347. PubMed ID: 37490830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autotrophic nitrate uptake in river networks: A modeling approach using continuous high-frequency data.
    Yang X; Jomaa S; Büttner O; Rode M
    Water Res; 2019 Jun; 157():258-268. PubMed ID: 30959329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying in-stream retention of nitrate at catchment scales using a practical mass balance approach.
    Schwientek M; Selle B
    Environ Monit Assess; 2016 Feb; 188(2):111. PubMed ID: 26801154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal drought effects on the water quality of the Biobío River, Central Chile.
    Yevenes MA; Figueroa R; Parra O
    Environ Sci Pollut Res Int; 2018 May; 25(14):13844-13856. PubMed ID: 29512009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns.
    Mueller C; Krieg R; Merz R; Knöller K
    Isotopes Environ Health Stud; 2016; 52(1-2):61-74. PubMed ID: 25811939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stream-aquifer and in-stream processes affecting nitrogen along a major river and contributing tributary.
    Huizenga A; Bailey RT; Gates TK
    J Contam Hydrol; 2017 Apr; 199():24-35. PubMed ID: 28342549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green light: gross primary production influences seasonal stream N export by controlling fine-scale N dynamics.
    Lupon A; Martí E; Sabater F; Bernal S
    Ecology; 2016 Jan; 97(1):133-44. PubMed ID: 27008783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling High-Frequency Stream Metabolism and Nutrient Monitoring to Explore Biogeochemical Controls on Downstream Nitrate Delivery.
    Jarvie HP; Sharpley AN; Kresse T; Hays PD; Williams RJ; King SM; Berry LG
    Environ Sci Technol; 2018 Dec; 52(23):13708-13717. PubMed ID: 30376311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is a simple model based on two mixing reservoirs able to reproduce the intra-annual dynamics of DOC and NO
    Strohmenger L; Fovet O; Hrachowitz M; Salmon-Monviola J; Gascuel-Odoux C
    Sci Total Environ; 2021 Nov; 794():148715. PubMed ID: 34217086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought, megafires and flood - climate extreme impacts on catchment-scale river water quality on Australia's east coast.
    Johnston SG; Maher DT
    Water Res; 2022 Jun; 218():118510. PubMed ID: 35489146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation.
    Pellerin BA; Bergamaschi BA; Gilliom RJ; Crawford CG; Saraceno J; Frederick CP; Downing BD; Murphy JC
    Environ Sci Technol; 2014 Nov; 48(21):12612-9. PubMed ID: 25310505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery.
    Bende-Michl U; Verburg K; Cresswell HP
    Environ Monit Assess; 2013 Nov; 185(11):9191-219. PubMed ID: 23754144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river.
    Tank JL; Rosi-Marshall EJ; Baker MA; Hall RO
    Ecology; 2008 Oct; 89(10):2935-45. PubMed ID: 18959330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low discharge intensifies nitrogen retention in rivers - A case study in the Elbe River.
    Schulz G; van Beusekom JEE; Jacob J; Bold S; Schöl A; Ankele M; Sanders T; Dähnke K
    Sci Total Environ; 2023 Dec; 904():166740. PubMed ID: 37659520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous In-Stream Assimilatory Nitrate Uptake from High-Frequency Sensor Measurements.
    Rode M; Halbedel Née Angelstein S; Anis MR; Borchardt D; Weitere M
    Environ Sci Technol; 2016 Jun; 50(11):5685-94. PubMed ID: 27174385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal variations of surface water quality in a medium-sized river catchment (Northwestern Germany) with agricultural and urban land use over a five-year period with extremely dry summers.
    Buss J; Achten C
    Sci Total Environ; 2022 Apr; 818():151730. PubMed ID: 34800458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of macrophytes on ecosystem metabolism and net nutrient uptake in a groundwater fed lowland river.
    Preiner S; Dai Y; Pucher M; Reitsema RE; Schoelynck J; Meire P; Hein T
    Sci Total Environ; 2020 Jun; 721():137620. PubMed ID: 32182457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seeing the light: urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover.
    Reisinger AJ; Doody TR; Groffman PM; Kaushal SS; Rosi EJ
    Ecol Appl; 2019 Sep; 29(6):e01941. PubMed ID: 31155778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving nitrate load estimates in an agricultural catchment using Event Response Reconstruction.
    Jomaa S; Aboud I; Dupas R; Yang X; Rozemeijer J; Rode M
    Environ Monit Assess; 2018 May; 190(6):330. PubMed ID: 29732470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking nitrate sources in the Chaohu Lake, China, using the nitrogen and oxygen isotopic approach.
    Yu Q; Wang F; Li X; Yan W; Li Y; Lv S
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19518-19529. PubMed ID: 29732507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.