BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 37491248)

  • 1. XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease.
    Yi F; Yang H; Chen D; Qin Y; Han H; Cui J; Bai W; Ma Y; Zhang R; Yu H
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):137. PubMed ID: 37491248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data analysis with Shapley values for automatic subject selection in Alzheimer's disease data sets using interpretable machine learning.
    Bloch L; Friedrich CM;
    Alzheimers Res Ther; 2021 Sep; 13(1):155. PubMed ID: 34526114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease.
    El-Sappagh S; Alonso JM; Islam SMR; Sultan AM; Kwak KS
    Sci Rep; 2021 Jan; 11(1):2660. PubMed ID: 33514817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.
    Apostolova LG; Hwang KS; Kohannim O; Avila D; Elashoff D; Jack CR; Shaw L; Trojanowski JQ; Weiner MW; Thompson PM;
    Neuroimage Clin; 2014; 4():461-72. PubMed ID: 24634832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer's Disease from Mild Cognitive Impairment.
    Franciotti R; Nardini D; Russo M; Onofrj M; Sensi SL; ;
    Neuroscience; 2023 Mar; 514():143-152. PubMed ID: 36736612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of an automatic classification algorithm for the diagnosis of Alzheimer's disease using a high-performance interpretable deep learning network.
    Park HY; Shim WH; Suh CH; Heo H; Oh HW; Kim J; Sung J; Lim JS; Lee JH; Kim HS; Kim SJ
    Eur Radiol; 2023 Nov; 33(11):7992-8001. PubMed ID: 37170031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. c-Diadem: a constrained dual-input deep learning model to identify novel biomarkers in Alzheimer's disease.
    Jemimah S; AlShehhi A;
    BMC Med Genomics; 2023 Oct; 16(Suppl 2):244. PubMed ID: 37833700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.
    Moradi E; Pepe A; Gaser C; Huttunen H; Tohka J;
    Neuroimage; 2015 Jan; 104():398-412. PubMed ID: 25312773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing different algorithms for the course of Alzheimer's disease using machine learning.
    Tang X; Liu J
    Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Efficient Combination among sMRI, CSF, Cognitive Score, and
    Khatri U; Kwon GR
    Comput Intell Neurosci; 2020; 2020():8015156. PubMed ID: 32565773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic comparison of 3D Deep learning and classical machine learning explanations for Alzheimer's Disease detection.
    Bloch L; Friedrich CM;
    Comput Biol Med; 2024 Mar; 170():108029. PubMed ID: 38308870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explainable AI-based Deep-SHAP for mapping the multivariate relationships between regional neuroimaging biomarkers and cognition.
    Bhattarai P; Thakuri DS; Nie Y; Chand GB
    Eur J Radiol; 2024 May; 174():111403. PubMed ID: 38452732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database.
    Dimitriadis SI; Liparas D; Tsolaki MN;
    J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-Term Memory Binding Distinguishing Amnestic Mild Cognitive Impairment from Healthy Aging: A Machine Learning Study.
    Martínez-Florez JF; Osorio JD; Cediel JC; Rivas JC; Granados-Sánchez AM; López-Peláez J; Jaramillo T; Cardona JF
    J Alzheimers Dis; 2021; 81(2):729-742. PubMed ID: 33814438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of endoplasmic reticulum stress-associated genes and subtypes for prediction of Alzheimer's disease based on interpretable machine learning.
    Lai Y; Lin X; Lin C; Lin X; Chen Z; Zhang L
    Front Pharmacol; 2022; 13():975774. PubMed ID: 36059957
    [No Abstract]   [Full Text] [Related]  

  • 17. Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer's disease.
    Sarica A; Aracri F; Bianco MG; Arcuri F; Quattrone A; Quattrone A;
    Brain Inform; 2023 Nov; 10(1):31. PubMed ID: 37979033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning application for classification of Alzheimer's disease stages using
    Park SW; Yeo NY; Lee J; Lee SH; Byun J; Park DY; Yum S; Kim JK; Byeon G; Kim Y; Jang JW;
    Biomed Eng Online; 2023 Apr; 22(1):40. PubMed ID: 37120537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble learning system for a 4-way classification of Alzheimer's disease and mild cognitive impairment.
    Yao D; Calhoun VD; Fu Z; Du Y; Sui J
    J Neurosci Methods; 2018 May; 302():75-81. PubMed ID: 29578038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Machine Learning Methods to Improve Predictive Models of Alzheimer's Disease.
    Ezzati A; Zammit AR; Harvey DJ; Habeck C; Hall CB; Lipton RB;
    J Alzheimers Dis; 2019; 71(3):1027-1036. PubMed ID: 31476152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.