These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37491305)

  • 1. Broadband quantum-dot frequency-modulated comb laser.
    Dong B; Dumont M; Terra O; Wang H; Netherton A; Bowers JE
    Light Sci Appl; 2023 Jul; 12(1):182. PubMed ID: 37491305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator.
    Zhang M; Buscaino B; Wang C; Shams-Ansari A; Reimer C; Zhu R; Kahn JM; Lončar M
    Nature; 2019 Apr; 568(7752):373-377. PubMed ID: 30858615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared frequency comb based on a quantum cascade laser.
    Hugi A; Villares G; Blaser S; Liu HC; Faist J
    Nature; 2012 Dec; 492(7428):229-33. PubMed ID: 23235876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated frequency-modulated optical parametric oscillator.
    Stokowski HS; Dean DJ; Hwang AY; Park T; Celik OT; McKenna TP; Jankowski M; Langrock C; Ansari V; Fejer MM; Safavi-Naeini AH
    Nature; 2024 Mar; 627(8002):95-100. PubMed ID: 38448697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical frequency comb generation from a 1.65 µm single-section quantum well laser.
    Li X; Sia JXB; Wang J; Qiao Z; Wang W; Guo X; Wang H; Liu C
    Opt Express; 2022 Jan; 30(3):4117-4124. PubMed ID: 35209656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-referenced photonic chip soliton Kerr frequency comb.
    Brasch V; Lucas E; Jost JD; Geiselmann M; Kippenberg TJ
    Light Sci Appl; 2017 Jan; 6(1):e16202. PubMed ID: 30167198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the spectral bandwidth of quantum cascade laser frequency combs.
    Beiser M; Opačak N; Hillbrand J; Strasser G; Schwarz B
    Opt Lett; 2021 Jul; 46(14):3416-3419. PubMed ID: 34264227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion.
    Xiao Z; Li T; Cai M; Zhang H; Huang Y; Li C; Yao B; Wu K; Chen J
    Light Sci Appl; 2023 Feb; 12(1):33. PubMed ID: 36725833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation.
    Wang C; Zhang M; Yu M; Zhu R; Hu H; Loncar M
    Nat Commun; 2019 Feb; 10(1):978. PubMed ID: 30816151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz.
    Huang SW; Yang J; Lim J; Zhou H; Yu M; Kwong DL; Wong CW
    Sci Rep; 2015 Aug; 5():13355. PubMed ID: 26311406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency comb generation by CW laser injection into a quantum-dot mode-locked laser.
    Pinkert TJ; Salumbides EJ; Tahvili MS; Ubachs W; Bente EA; Eikema KS
    Opt Express; 2012 Sep; 20(19):21357-71. PubMed ID: 23037259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-gap Fabry-Pérot cavity filtered 30 nm broadband electro-optic frequency combs for high-order coherent communications.
    Zhang C; Zhu Y; He B; Liu R; Chen Z; Hu W; Xie X
    Opt Lett; 2022 Aug; 47(15):3724-3727. PubMed ID: 35913299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser.
    Liu L; Zhang X; Xu T; Dai Z; Dai S; Liu T
    Opt Lett; 2017 Mar; 42(6):1173-1176. PubMed ID: 28295076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal characteristics of quantum cascade laser frequency modulated combs in long wave infrared and THz regions.
    Henry N; Burghoff D; Hu Q; Khurgin JB
    Opt Express; 2018 May; 26(11):14201-14212. PubMed ID: 29877461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.
    Castellano F; Li L; Linfield EH; Davies AG; Vitiello MS
    Sci Rep; 2016 Mar; 6():23053. PubMed ID: 26976199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.
    Bardella P; Columbo LL; Gioannini M
    Opt Express; 2017 Oct; 25(21):26234-26252. PubMed ID: 29041283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide.
    Liu Y; Metcalf AJ; Company VT; Wu R; Fan L; Varghese LT; Qi M; Weiner AM
    Opt Lett; 2014 Nov; 39(22):6478-81. PubMed ID: 25490498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable and compact dispersion compensation of broadband THz quantum cascade laser frequency combs.
    Mezzapesa FP; Pistore V; Garrasi K; Li L; Davies AG; Linfield EH; Dhillon S; Vitiello MS
    Opt Express; 2019 Jul; 27(15):20231-20240. PubMed ID: 31510121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Design for Integrated Photonic Waveguides with Agile Dispersion.
    Wang Z; Du J; Shen W; Liu J; He Z
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.