These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37491475)
1. Author Correction: Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language. Park NH; Manica M; Born J; Hedrick JL; Erdmann T; Zubarev DY; Adell-Mill N; Arrechea PL Nat Commun; 2023 Jul; 14(1):4469. PubMed ID: 37491475 [No Abstract] [Full Text] [Related]
2. Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language. Park NH; Manica M; Born J; Hedrick JL; Erdmann T; Zubarev DY; Adell-Mill N; Arrechea PL Nat Commun; 2023 Jun; 14(1):3686. PubMed ID: 37344485 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Wang X; Huo Z; Xie X; Shanaiah N; Tong R Chem Asian J; 2023 Feb; 18(4):e202201147. PubMed ID: 36571563 [TBL] [Abstract][Full Text] [Related]
4. Recent Developments and Optimization of Lipase-Catalyzed Lactone Formation and Ring-Opening Polymerization. Champagne E; Strandman S; Zhu XX Macromol Rapid Commun; 2016 Dec; 37(24):1986-2004. PubMed ID: 27805747 [TBL] [Abstract][Full Text] [Related]
5. Readily accessible and easily modifiable Ru-based catalysts for efficient and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. Khan RK; Torker S; Hoveyda AH J Am Chem Soc; 2013 Jul; 135(28):10258-61. PubMed ID: 23822154 [TBL] [Abstract][Full Text] [Related]
6. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation. Osten KM; Mehrkhodavandi P Acc Chem Res; 2017 Nov; 50(11):2861-2869. PubMed ID: 29087695 [TBL] [Abstract][Full Text] [Related]
7. Valence-variable Catalysts for Redox-controlled Switchable Ring-opening Polymerization. Li B; Hu C; Pang X; Chen X Chem Asian J; 2023 Jan; 18(1):e202201031. PubMed ID: 36321213 [TBL] [Abstract][Full Text] [Related]
8. Tandem Ring-Opening-Ring-Closing Metathesis for Functional Metathesis Catalysts. Nagarkar AA; Yasir M; Crochet A; Fromm KM; Kilbinger AF Angew Chem Int Ed Engl; 2016 Sep; 55(40):12343-6. PubMed ID: 27592840 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic Insight into the Ring-Opening Polymerization of Lin YF; Jheng NY Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31546919 [TBL] [Abstract][Full Text] [Related]
10. The role of ligand redox non-innocence in ring-opening polymerization reactions catalysed by bis(imino)pyridine iron alkoxide complexes. Delle Chiaie KR; Biernesser AB; Ortuño MA; Dereli B; Iovan DA; Wilding MJT; Li B; Cramer CJ; Byers JA Dalton Trans; 2017 Oct; 46(38):12971-12980. PubMed ID: 28932853 [TBL] [Abstract][Full Text] [Related]
11. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides. Diment WT; Lindeboom W; Fiorentini F; Deacy AC; Williams CK Acc Chem Res; 2022 Aug; 55(15):1997-2010. PubMed ID: 35863044 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Sustainable Polyesters via Organocatalytic Ring-Opening Polymerization of O-carboxyanhydrides: Advances and Perspectives. Wang J; Tao Y Macromol Rapid Commun; 2021 Feb; 42(3):e2000535. PubMed ID: 33241601 [TBL] [Abstract][Full Text] [Related]
13. Lipase-catalyzed ring-opening polymerization of natural compound-based cyclic monomers. Wang K; Li C; Man L; Zhang M; Jia YG; Zhu XX Chem Commun (Camb); 2023 Jul; 59(60):9182-9194. PubMed ID: 37431654 [TBL] [Abstract][Full Text] [Related]
14. Controlling polymer stereochemistry in ring-opening polymerization: a decade of advances shaping the future of biodegradable polyesters. Tschan MJ; Gauvin RM; Thomas CM Chem Soc Rev; 2021 Dec; 50(24):13587-13608. PubMed ID: 34786575 [TBL] [Abstract][Full Text] [Related]
15. Alkyne-Palladium(II)-Catalyzed Living Polymerization of Isocyanides: An Exploration of Diverse Structures and Functions. Liu N; Zhou L; Wu ZQ Acc Chem Res; 2021 Oct; 54(20):3953-3967. PubMed ID: 34601864 [TBL] [Abstract][Full Text] [Related]
16. The Role of Nitrogen Donors in Zinc Catalysts for Lactide Ring-Opening Polymerization. Ebrahimi T; Mamleeva E; Yu I; Hatzikiriakos SG; Mehrkhodavandi P Inorg Chem; 2016 Sep; 55(18):9445-53. PubMed ID: 27580374 [TBL] [Abstract][Full Text] [Related]
17. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide. Schäfer PM; Fuchs M; Ohligschläger A; Rittinghaus R; McKeown P; Akin E; Schmidt M; Hoffmann A; Liauw MA; Jones MD; Herres-Pawlis S ChemSusChem; 2017 Sep; 10(18):3547-3556. PubMed ID: 28779508 [TBL] [Abstract][Full Text] [Related]
18. New Paradigms for Organic Catalysts: The First Organocatalytic Living Polymerization. Nederberg F; Connor EF; Möller M; Glauser T; Hedrick JL Angew Chem Int Ed Engl; 2001 Jul; 40(14):2712-2715. PubMed ID: 29712329 [TBL] [Abstract][Full Text] [Related]
19. Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate. De Hoe GX; Şucu T; Shaver MP Acc Chem Res; 2022 Jun; 55(11):1514-1523. PubMed ID: 35579567 [TBL] [Abstract][Full Text] [Related]
20. Examining the Effects of Monomer and Catalyst Structure on the Mechanism of Ruthenium-Catalyzed Ring-Opening Metathesis Polymerization. Wolf WJ; Lin TP; Grubbs RH J Am Chem Soc; 2019 Nov; 141(44):17796-17808. PubMed ID: 31651158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]