These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37491558)

  • 21. Reliably Measuring Learning-Dependent Distractor Suppression with Eye Tracking.
    Kim AJ; Grégoire L; Anderson BA
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capture by Context Elements, Not Attentional Suppression of Distractors, Explains the P
    Kerzel D; Burra N
    J Cogn Neurosci; 2020 Jun; 32(6):1170-1183. PubMed ID: 31967520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatially Guided Distractor Suppression during Visual Search.
    Feldmann-Wüstefeld T; Weinberger M; Awh E
    J Neurosci; 2021 Apr; 41(14):3180-3191. PubMed ID: 33653697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation.
    Failing M; Wang B; Theeuwes J
    Atten Percept Psychophys; 2019 Jul; 81(5):1405-1414. PubMed ID: 30868474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning to suppress a location is configuration-dependent.
    Gao Y; de Waard J; Theeuwes J
    Atten Percept Psychophys; 2023 Oct; 85(7):2170-2177. PubMed ID: 37258893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetric learning of dynamic spatial regularities in visual search: Robust facilitation of predictable target locations, fragile suppression of distractor locations.
    Yu H; Allenmark F; Müller HJ; Shi Z
    J Exp Psychol Hum Percept Perform; 2023 May; 49(5):709-724. PubMed ID: 37261775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attentional capture by alcohol-related stimuli may be activated involuntarily by top-down search goals.
    Brown CRH; Duka T; Forster S
    Psychopharmacology (Berl); 2018 Jul; 235(7):2087-2099. PubMed ID: 29696310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical regularities modulate attentional capture.
    Wang B; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2018 Jan; 44(1):13-17. PubMed ID: 29309194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Value-modulated attentional capture is augmented by win-related sensory cues.
    Pearson D; Piao M; Le Pelley ME
    Q J Exp Psychol (Hove); 2024 Jan; 77(1):133-143. PubMed ID: 36803153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial enhancement due to statistical learning tracks the estimated spatial probability.
    Zhang Y; Yang Y; Wang B; Theeuwes J
    Atten Percept Psychophys; 2022 May; 84(4):1077-1086. PubMed ID: 35426029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reward learning and statistical learning independently influence attentional priority of salient distractors in visual search.
    Le Pelley ME; Ung R; Mine C; Most SB; Watson P; Pearson D; Theeuwes J
    Atten Percept Psychophys; 2022 Jul; 84(5):1446-1459. PubMed ID: 35013993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rejecting salient distractors: Generalization from experience.
    Vatterott DB; Mozer MC; Vecera SP
    Atten Percept Psychophys; 2018 Feb; 80(2):485-499. PubMed ID: 29230673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proactive enhancement and suppression elicited by statistical regularities in visual search.
    Huang C; Donk M; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2022 May; 48(5):443-457. PubMed ID: 35324244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pavlovian reward learning underlies value driven attentional capture.
    Bucker B; Theeuwes J
    Atten Percept Psychophys; 2017 Feb; 79(2):415-428. PubMed ID: 27905069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decomposing experience-driven attention: Opposite attentional effects of previously predictive cues.
    Lin Z; Lu ZL; He S
    Atten Percept Psychophys; 2016 Oct; 78(7):2185-98. PubMed ID: 27068051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systemic effects of selection history on learned ignoring.
    Kim A; Anderson B
    Psychon Bull Rev; 2022 Aug; 29(4):1347-1354. PubMed ID: 35112310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Altering spatial priority maps via statistical learning of target selection and distractor filtering.
    Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L
    Cortex; 2018 May; 102():67-95. PubMed ID: 29096874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learned feature regularities enable suppression of spatially overlapping stimuli.
    Thayer DD; Miller M; Giesbrecht B; Sprague TC
    Atten Percept Psychophys; 2023 Apr; 85(3):769-784. PubMed ID: 36417129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning to suppress a location does not depend on knowing which location.
    Gao Y; Theeuwes J
    Atten Percept Psychophys; 2022 May; 84(4):1087-1097. PubMed ID: 35194772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.