These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37491565)

  • 1. Distinct sensorimotor mechanisms underlie the control of grasp and manipulation forces for dexterous manipulation.
    Wu YH; Santello M
    Sci Rep; 2023 Jul; 13(1):12037. PubMed ID: 37491565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual information following object grasp supports digit position variability and swift anticipatory force control.
    Bland JT; Davare M; Marneweck M
    J Neurophysiol; 2023 Jun; 129(6):1389-1399. PubMed ID: 37162174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dexterous manipulation: Differential sensitivity of manipulation and grasp forces to task requirements.
    Noll WP; Wu YH; Santello M
    J Neurophysiol; 2024 Jun; ():. PubMed ID: 38863425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Representations of Sensorimotor Memory- and Digit Position-Based Load Force Adjustments Before the Onset of Dexterous Object Manipulation.
    Marneweck M; Barany DA; Santello M; Grafton ST
    J Neurosci; 2018 May; 38(20):4724-4737. PubMed ID: 29686047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation.
    Fu Q; Zhang W; Santello M
    J Neurosci; 2010 Jul; 30(27):9117-26. PubMed ID: 20610745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorimotor uncertainty modulates corticospinal excitability during skilled object manipulation.
    Davare M; Parikh PJ; Santello M
    J Neurophysiol; 2019 Apr; 121(4):1162-1170. PubMed ID: 30726158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit.
    Burstedt MK; Edin BB; Johansson RS
    Exp Brain Res; 1997 Oct; 117(1):67-79. PubMed ID: 9386005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representational Neural Mapping of Dexterous Grasping Before Lifting in Humans.
    Marneweck M; Grafton ST
    J Neurosci; 2020 Mar; 40(13):2708-2716. PubMed ID: 32015024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of grasp stability in humans under different frictional conditions during multidigit manipulation.
    Burstedt MK; Flanagan JR; Johansson RS
    J Neurophysiol; 1999 Nov; 82(5):2393-405. PubMed ID: 10561413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of digit placement control in sensorimotor transformations for dexterous manipulation.
    Shibata D; Santello M
    J Neurophysiol; 2017 Nov; 118(5):2935-2943. PubMed ID: 28835523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipatory modulation of digit placement for grasp control is affected by Parkinson's disease.
    Lukos JR; Lee D; Poizner H; Santello M
    PLoS One; 2010 Feb; 5(2):e9184. PubMed ID: 20169196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aging on conditional visuomotor learning for grasping and lifting eccentrically weighted objects.
    Rao N; Mehta N; Patel P; Parikh PJ
    J Appl Physiol (1985); 2021 Sep; 131(3):937-948. PubMed ID: 34264127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct adaptation processes underlie multidigit force coordination for dexterous manipulation.
    Smith MD; Hooks K; Santello M; Fu Q
    J Neurophysiol; 2023 Feb; 129(2):380-391. PubMed ID: 36629326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grasping uncertainty: effects of sensorimotor memories on high-level planning of dexterous manipulation.
    Lukos JR; Choi JY; Santello M
    J Neurophysiol; 2013 Jun; 109(12):2937-46. PubMed ID: 23554435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation.
    Marneweck M; Lee-Miller T; Santello M; Gordon AM
    Front Hum Neurosci; 2016; 10():461. PubMed ID: 27695406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carpal tunnel syndrome on adaptation of multi-digit forces to object mass distribution for whole-hand manipulation.
    Zhang W; Johnston JA; Ross MA; Coakley BJ; Gleason EA; Dueck AC; Santello M
    J Neuroeng Rehabil; 2012 Nov; 9():83. PubMed ID: 23171737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand forces and placement are modulated and covary during anticipatory control of bimanual manipulation.
    Lee-Miller T; Santello M; Gordon AM
    J Neurophysiol; 2019 Jun; 121(6):2276-2290. PubMed ID: 30969893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tangential torque effects on the control of grip forces when holding objects with a precision grip.
    Kinoshita H; Bäckström L; Flanagan JR; Johansson RS
    J Neurophysiol; 1997 Sep; 78(3):1619-30. PubMed ID: 9310447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of fingertip forces in multidigit manipulation.
    Flanagan JR; Burstedt MK; Johansson RS
    J Neurophysiol; 1999 Apr; 81(4):1706-17. PubMed ID: 10200206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.