These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37491640)

  • 1. Identification for the species of aquatic higher plants in the Taihu Lake basin based on hyperspectral remote sensing.
    Mu S; You K; Song T; Li Y; Wang L; Shi J
    Environ Monit Assess; 2023 Jul; 195(8):989. PubMed ID: 37491640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Study on Algae Bloom Pigment in the Eutrophic Lake Using Bio-Optical Modelling: Hyperspectral Remote Sensing Approach.
    Vishnu Prasanth BR; Sivakumar R; Ramaraj M
    Bull Environ Contam Toxicol; 2022 Dec; 109(6):962-968. PubMed ID: 35366066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study on Effect of Water Background on Canopy Spectral of Wetland Aquatic Plant.
    Liu G; Tang P; Cai Zhan-qing ; Wang TT; Xu JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2970-6. PubMed ID: 26904852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.
    Lausch A; Pause M; Merbach I; Zacharias S; Doktor D; Volk M; Seppelt R
    Environ Monit Assess; 2013 Feb; 185(2):1215-35. PubMed ID: 22527462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data.
    Dev PJ; Sukenik A; Mishra DR; Ostrovsky I
    Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?
    Xiong J; Lin C; Cao Z; Hu M; Xue K; Chen X; Ma R
    Water Res; 2022 May; 215():118213. PubMed ID: 35247602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing.
    Zomer RJ; Trabucco A; Ustin SL
    J Environ Manage; 2009 May; 90(7):2170-7. PubMed ID: 18395960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of water hyacinth biomass and its impact on the floristic composition of aquatic plants in a wetland ecosystem of the Brahmaputra floodplain of Assam, India.
    Lahon D; Sahariah D; Debnath J; Nath N; Meraj G; Farooq M; Kanga S; Singh SK; Chand K
    PeerJ; 2023; 11():e14811. PubMed ID: 36755867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application and prospects of hyperspectral remote sensing in monitoring plant diversity in grassland].
    Gu C; Liang J; Liu XY; Sun BY; Sun TS; Yu JG; Sun CX; Wan HW; Gao JX
    Ying Yong Sheng Tai Xue Bao; 2024 May; 35(5):1397-1407. PubMed ID: 38886439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Wetland Remote Sensing.
    Guo M; Li J; Sheng C; Xu J; Wu L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28379174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research Progress on Remote Sensing Monitoring of Lake Water Quality Parameters].
    Wang SM; Qin BQ
    Huan Jing Ke Xue; 2023 Mar; 44(3):1228-1243. PubMed ID: 36922185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years.
    Zhao D; Lv M; Jiang H; Cai Y; Xu D; An S
    PLoS One; 2013; 8(6):e66365. PubMed ID: 23823189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Water purification of four aquatic plant species with the presence of iron-carbon interior electrolytic substrates.].
    Zong XX; Min MY; Sun GF; Li N; An SQ; Leng X
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2084-2090. PubMed ID: 29737114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China.
    Lyu L; Song K; Wen Z; Liu G; Shang Y; Li S; Tao H; Wang X; Hou J
    Opt Express; 2022 Mar; 30(7):10329-10345. PubMed ID: 35473003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review.
    Lassalle G
    Sci Total Environ; 2021 Sep; 788():147758. PubMed ID: 34020093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active remote sensing data and dispersal processes improve predictions for an invasive aquatic plant during a climatic extreme in Great Lakes coastal wetlands.
    Jochems L; Brandt J; Kingdon C; Schurkamp SJ; Monks A; Lishawa SC
    J Environ Manage; 2024 Nov; 370():122610. PubMed ID: 39340887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing.
    Xu J; Lei S; Bi S; Li Y; Lyu H; Xu J; Xu X; Mu M; Miao S; Zeng S; Zheng Z
    Water Res; 2020 Jan; 168():115162. PubMed ID: 31629230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping global lake aquatic vegetation dynamics using 10-m resolution satellite observations.
    Hou X; Liu J; Huang H; Zhang Y; Liu C; Gong P
    Sci Bull (Beijing); 2024 Oct; 69(19):3115-3126. PubMed ID: 38906736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of satellite greenness to predict plant diversity among wetland types, ecoregions, and disturbance levels.
    Taddeo S; Dronova I; Harris K
    Ecol Appl; 2019 Oct; 29(7):e01961. PubMed ID: 31240799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.