These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3749169)

  • 1. Development of retinal central projection in Xenopus tadpoles.
    Fujisawa H; Takagi S
    Prog Clin Biol Res; 1986; 217B():109-12. PubMed ID: 3749169
    [No Abstract]   [Full Text] [Related]  

  • 2. Mode of growth of retinal axons within the tectum of Xenopus tadpoles, and implications in the ordered neuronal connection between the retina and the tectum.
    Fujisawa H
    J Comp Neurol; 1987 Jun; 260(1):127-39. PubMed ID: 3597831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum.
    Pratt KG; Dong W; Aizenman CD
    Nat Neurosci; 2008 Apr; 11(4):467-75. PubMed ID: 18344990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the hypothesis of shifting neuronal relationships during development.
    Scott TM; Lazar G
    J Anat; 1976 Jul; 121(Pt 3):485-96. PubMed ID: 65348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of the retino-tectal projection in Xenopus laevis: an autoradiographic and degeneration study.
    Scott TM
    J Embryol Exp Morphol; 1974 Apr; 31(2):409-14. PubMed ID: 4854715
    [No Abstract]   [Full Text] [Related]  

  • 6. Binocular interaction and intertectal neuronal connexions: dependence upon developmental stage.
    Keating MJ; Beazley L; Feldman JD; Gaze RM
    Proc R Soc Lond B Biol Sci; 1975 Dec; 191(1105):445-66. PubMed ID: 1777
    [No Abstract]   [Full Text] [Related]  

  • 7. Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii).
    Marotte LR
    J Comp Neurol; 1993 May; 331(1):1-13. PubMed ID: 7686568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of the retinotectal projections from compound eyes in Xenopus.
    Straznicky C; Gaze RM; Keating MJ
    J Embryol Exp Morphol; 1981 Apr; 62():13-35. PubMed ID: 7276807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number.
    Norden JJ; Constantine-Paton M
    J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD; Cline HT
    J Neurophysiol; 2007 Apr; 97(4):2949-57. PubMed ID: 17267761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional synaptic relations during the development of the retino-tectal projection in amphibians.
    Chung SH; Keating MJ; Bliss TV
    Proc R Soc Lond B Biol Sci; 1974 Nov; 187(1089):449-59. PubMed ID: 4155504
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of GDNF and its receptor components GFR-alpha1, -alpha2 and Ret during development and in the mature retino-collicular pathway.
    Kretz A; Jacob AM; Tausch S; Straten G; Isenmann S
    Brain Res; 2006 May; 1090(1):1-14. PubMed ID: 16650834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the development of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine: results and speculation.
    Hoskins SG
    J Neurobiol; 1986 May; 17(3):203-29. PubMed ID: 3519864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant retinotectal projection induced by larval unilateral enucleation in Xenopus.
    Straznicky C; Hiscock J
    Neurosci Lett; 1983 Aug; 39(1):5-10. PubMed ID: 6633938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aberrant retinal pathway and visual centers in Xenopus tadpoles share a common cell surface molecule, A5 antigen.
    Fujisawa H; Ohtsuki T; Takagi S; Tsuji T
    Dev Biol; 1989 Oct; 135(2):231-40. PubMed ID: 2776965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of input specificity of ltp during development of retinotectal connections in vivo.
    Tao HW; Zhang LI; Engert F; Poo M
    Neuron; 2001 Aug; 31(4):569-80. PubMed ID: 11545716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal and stabilization of synaptic modifications in a developing visual system.
    Zhou Q; Tao HW; Poo MM
    Science; 2003 Jun; 300(5627):1953-7. PubMed ID: 12817152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors involved in the development of ipsilateral retinothalamic projections in Xenopus laevis.
    Kennard C
    J Embryol Exp Morphol; 1981 Oct; 65():199-217. PubMed ID: 7334300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the retinotectal projection in the chicken.
    Rager GH
    Adv Anat Embryol Cell Biol; 1980; 63():I-VIII, 1-90. PubMed ID: 7457227
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.