BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 3749176)

  • 1. Environmental control in pigment pattern formation of the axolotl larva.
    Epperlein HH; Perris R; Löfberg J
    Prog Clin Biol Res; 1986; 217B():191-4. PubMed ID: 3749176
    [No Abstract]   [Full Text] [Related]  

  • 2. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural crest cell behavior in white and dark embryos of Ambystoma mexicanum: epidermal inhibition of pigment cell migration in the white axolotl.
    Keller RE; Löfberg J; Spieth J
    Dev Biol; 1982 Jan; 89(1):179-95. PubMed ID: 7054006
    [No Abstract]   [Full Text] [Related]  

  • 4. What insights into vertebrate pigmentation has the axolotl model system provided?
    Frost-Mason SK; Mason KA
    Int J Dev Biol; 1996 Aug; 40(4):685-93. PubMed ID: 8877441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae).
    Parichy DM
    Dev Biol; 1996 May; 175(2):283-300. PubMed ID: 8626033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural crest cell migration and pigment pattern formation in urodele amphibians.
    Epperlein HH; Löfberg J; Olsson L
    Int J Dev Biol; 1996 Feb; 40(1):229-38. PubMed ID: 8735933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms.
    Parichy DM
    Dev Biol; 1996 May; 175(2):265-82. PubMed ID: 8626032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant lethal induction by ethyl methanesulfonate in the male axolotl (Ambystoma mexicanum).
    Armstrong JB; Gillespie LL
    J Exp Zool; 1980 Jun; 212(3):415-21. PubMed ID: 7462966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into pigmentary phenomena provided by grafting and chimera formation in the axolotl.
    Houillon C; Bagnara JT
    Pigment Cell Res; 1996 Dec; 9(6):281-8. PubMed ID: 9125751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of symmetrical forelimbs in the axolotl, Ambystoma mexicanum.
    Holder N; Tank PW; Bryant SV
    Dev Biol; 1980 Feb; 74(2):302-14. PubMed ID: 7371977
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of pigment cells during early amphibian development (Triturus alpestris, Ambystoma mexicanum).
    Epperlein HH; Ziegler I; Perris R
    Cell Tissue Res; 1988 Sep; 253(3):493-505. PubMed ID: 3141059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical activity in cardiac mutant axolotl hearts.
    Epstein ML; Lemanski LF
    J Exp Zool; 1980 Feb; 211(2):131-6. PubMed ID: 7373269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ergocornine on melanophores of Ambystoma tigrinum: evidence for suppression of pituitary MSH release.
    Platt JE; Norris DO
    J Exp Zool; 1974 Jul; 189(1):7-12. PubMed ID: 4366221
    [No Abstract]   [Full Text] [Related]  

  • 15. Distal transformation from double-half forearms in the axolotl, Ambystoma mexicanum.
    Krasner GN; Bryant SV
    Dev Biol; 1980 Feb; 74(2):315-25. PubMed ID: 7371978
    [No Abstract]   [Full Text] [Related]  

  • 16. Ultrastructure of pigment cells in wild type and color mutants of the Mexican axolotl.
    Dunson MK
    Cell Tissue Res; 1974; 151(2):259-68. PubMed ID: 4140038
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of pigmentation after transplantation of presumptive epidermis between embryos of white axolotls Ambystoma mexicanum of different ages.
    Bogomolova VI; Korochkin LI
    Sov J Dev Biol; 1974 Jul; 4(4):384-7. PubMed ID: 4610790
    [No Abstract]   [Full Text] [Related]  

  • 18. The developmental mechanics of pigment pattern formation in the black axolotl, Amblystoma mexicanum. I. The formation of yellow and black bars in young larvae.
    LEHMAN HE
    J Exp Zool; 1957 Jul; 135(2):355-86. PubMed ID: 13481300
    [No Abstract]   [Full Text] [Related]  

  • 19. Development of pigmentation in the eyeless mutant of the Mexican axolotl, Ambystoma mexicanum, Shaw.
    Epp LG
    J Exp Zool; 1972 Aug; 181(2):169-80. PubMed ID: 5047358
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of the apical epidermal cap in amphibian regeneration as shown by the application of regeneration-inhibiting chemicals.
    Wolsky A
    Monogr Dev Biol; 1988; 21():22-9. PubMed ID: 3261835
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.