BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 3749182)

  • 1. Changes in the utilization of cell surface carbohydrates are implicated in the adhesion of Xenopus laevis melanophores in vitro.
    Milos NC; Wilson HC
    Prog Clin Biol Res; 1986; 217B():239-42. PubMed ID: 3749182
    [No Abstract]   [Full Text] [Related]  

  • 2. Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis.
    Milos NC; Wilson HC
    J Exp Zool; 1986 May; 238(2):211-24. PubMed ID: 3086486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferation in vitro of melanophores from Xenopus laevis.
    Fukuzawa T; Ide H
    J Exp Zool; 1983 May; 226(2):239-44. PubMed ID: 6306135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of cranial neural crest adhesion in vitro and migration in vivo using integrin antisense oligonucleotides.
    Kil SH; Lallier T; Bronner-Fraser M
    Dev Biol; 1996 Oct; 179(1):91-101. PubMed ID: 8873756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies on the melanophores of periodic albino mutant of Xenopus laevis.
    Fukuzawa T; Ide H
    J Embryol Exp Morphol; 1986 Feb; 91():65-78. PubMed ID: 3711792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on cellular adhesion of Xenopus laevis melanophores: modulation of cell-cell and cell-substratum adhesion in vitro by endogenous Xenopus galactoside-binding lectin.
    Milos NC; Wilson HC; Ma YL; Mohanraj TM; Frunchak YN
    Pigment Cell Res; 1987; 1(3):188-96. PubMed ID: 3508276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on cellular adhesion of Xenopus laevis melanophores: pigment pattern formation and alteration in vivo by endogenous galactoside-binding lectin or its sugar hapten inhibitor.
    Frunchak YN; Milos NC
    Pigment Cell Res; 1990; 3(2):101-14. PubMed ID: 2385564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of pigment cell pattern formation in the California newt, Taricha torosa.
    Tucker RP; Erickson CA
    J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of various nutritional supplements on the growth, migration and differentiation of Xenopus laevis neural crest cells in vitro.
    Wilson HC; Milos NC
    In Vitro Cell Dev Biol; 1987 May; 23(5):323-31. PubMed ID: 3583983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on cell adhesion and recognition. III. The occurrence of alpha-mannosidase at the fibroblast cell surface, and its possible role in cell recognition.
    Rauvala H; Hakomori SI
    J Cell Biol; 1981 Jan; 88(1):149-59. PubMed ID: 7204484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen type VI in neural crest development: distribution in situ and interaction with cells in vitro.
    Perris R; Kuo HJ; Glanville RW; Bronner-Fraser M
    Dev Dyn; 1993 Oct; 198(2):135-49. PubMed ID: 8305706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural crest cell interaction with type VI collagen is mediated by multiple cooperative binding sites within triple-helix and globular domains.
    Perris R; Kuo HJ; Glanville RW; Leibold S; Bronner-Fraser M
    Exp Cell Res; 1993 Nov; 209(1):103-17. PubMed ID: 8223995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray analysis of homocysteine-responsive genes in cardiac neural crest cells in vitro.
    Rosenquist TH; Bennett GD; Brauer PR; Stewart ML; Chaudoin TR; Finnell RH
    Dev Dyn; 2007 Apr; 236(4):1044-54. PubMed ID: 17326132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological and physiological aspects of melanophores in primary culture from tadpoles of Xenopus laevis.
    Seldenrijk R; Hup DR; de Graan PN; van de Veerdonk FC
    Cell Tissue Res; 1979 May; 198(3):397-409. PubMed ID: 223762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and developmental expression of Mitf in Xenopus laevis.
    Kumasaka M; Sato H; Sato S; Yajima I; Yamamoto H
    Dev Dyn; 2004 May; 230(1):107-13. PubMed ID: 15108314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae).
    Parichy DM
    Dev Biol; 1996 May; 175(2):283-300. PubMed ID: 8626033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of endogenous galactoside-binding lectin during morphogenesis of Xenopus laevis.
    Milos NC; Ma YL; Varma PV; Bering MP; Mohamed Z; Pilarski LM; Frunchak YN
    Anat Embryol (Berl); 1990; 182(4):319-27. PubMed ID: 2123609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the endogenous galactoside-binding lectin of Xenopus laevis during cranial neural crest development: lectin localization is similar to that of members of the N-CAM and cadherin families of cell adhesion molecules.
    Milos NC; Meadows G; Evanson JE; Pinchbeck JB; Bawa N; Young KJ; Palmer NG; Murdoch CA; Carmel D
    J Craniofac Genet Dev Biol; 1998; 18(1):11-29. PubMed ID: 9594375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of neural crest derivatives in the Xenopus tadpole tail.
    Lin G; Chen Y; Slack JM
    BMC Dev Biol; 2007 May; 7():56. PubMed ID: 17521450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assay system to study migratory behavior of cranial neural crest cells in Xenopus.
    Borchers A; Epperlein HH; Wedlich D
    Dev Genes Evol; 2000 Apr; 210(4):217-22. PubMed ID: 11180825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.