These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37492003)

  • 1. Changes in vertical and horizontal diversities mediated by the size structure of introduced fish collectively shape food-web stability.
    Vagnon C; Pomeranz J; Loheac B; Vallat M; Guillard J; Raymond JC; Sentis A; Frossard V
    Ecol Lett; 2023 Oct; 26(10):1752-1764. PubMed ID: 37492003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horizontal and vertical diversity jointly shape food web stability against small and large perturbations.
    Zhao Q; Van den Brink PJ; Carpentier C; Wang YXG; Rodríguez-Sánchez P; Xu C; Vollbrecht S; Gillissen F; Vollebregt M; Wang S; De Laender F
    Ecol Lett; 2019 Jul; 22(7):1152-1162. PubMed ID: 31095883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquatic food web expansion and trophic redundancy along the Rocky Mountain-Great Plains ecotone.
    Maitland BM; Rahel FJ
    Ecology; 2023 Jul; 104(7):e4103. PubMed ID: 37203414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes.
    Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI
    Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food web collapse and regime shift following goldfish introduction in permanent ponds.
    Lejeune B; Lepoint G; Denoël M
    Glob Chang Biol; 2024 Jul; 30(7):e17435. PubMed ID: 39039839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis.
    Wang S; Brose U
    Ecol Lett; 2018 Jan; 21(1):9-20. PubMed ID: 29057554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning.
    Amundsen PA; Lafferty KD; Knudsen R; Primicerio R; Kristoffersen R; Klemetsen A; Kuris AM
    Oecologia; 2013 Apr; 171(4):993-1002. PubMed ID: 23053223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of trophic niche compression: Evidence from landscape disturbance.
    Burdon FJ; McIntosh AR; Harding JS
    J Anim Ecol; 2020 Mar; 89(3):730-744. PubMed ID: 31691281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of body-size structure and adaptive foraging on food-web stability.
    Heckmann L; Drossel B; Brose U; Guill C
    Ecol Lett; 2012 Mar; 15(3):243-50. PubMed ID: 22276597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropical fish community does not recover 45 years after predator introduction.
    Sharpe DM; De León LF; González R; Torchin ME
    Ecology; 2017 Feb; 98(2):412-424. PubMed ID: 27861787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predator diversity and identity drive interaction strength and trophic cascades in a food web.
    Otto SB; Berlow EL; Rank NE; Smiley J; Brose U
    Ecology; 2008 Jan; 89(1):134-44. PubMed ID: 18376555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological Drivers of Mercury Bioaccumulation in Fish of a Subarctic Watercourse.
    Amundsen PA; Henriksson M; Poste A; Prati S; Power M
    Environ Toxicol Chem; 2023 Apr; 42(4):873-887. PubMed ID: 36727562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species invasion progressively disrupts the trophic structure of native food webs.
    Wainright CA; Muhlfeld CC; Elser JJ; Bourret SL; Devlin SP
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34725150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature, productivity, and habitat characteristics collectively drive lake food web structure.
    Leclerc C; Reynaud N; Danis PA; Moatar F; Daufresne M; Argillier C; Usseglio-Polatera P; Verneaux V; Dedieu N; Frossard V; Sentis A
    Glob Chang Biol; 2023 May; 29(9):2450-2465. PubMed ID: 36799515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vulnerability of species to range expansions by predators can be predicted using historical species associations and body size.
    Alofs KM; Jackson DA
    Proc Biol Sci; 2015 Aug; 282(1812):20151211. PubMed ID: 26180073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact.
    de Visser SN; Freymann BP; Olff H
    J Anim Ecol; 2011 Mar; 80(2):484-94. PubMed ID: 21155772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Legacy effects of fish but not elevation influence lake ecosystem response to environmental change.
    Symons CC; Schulhof MA; Cavalheri HB; Shurin JB
    J Anim Ecol; 2021 Mar; 90(3):662-672. PubMed ID: 33251623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.
    Binzer A; Guill C; Rall BC; Brose U
    Glob Chang Biol; 2016 Jan; 22(1):220-7. PubMed ID: 26365694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trade‐offs between supportive and provisioning ecosystem services of forage species in marine food webs.
    Essington TE; Munch SB
    Ecol Appl; 2014; 24(6):1543-57. PubMed ID: 29160672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food web differences between two neighboring tropical high mountain lakes and the influence of introducing a new top predator.
    Jiménez-Seinos JL; Alcocer J; Planas D
    PLoS One; 2023; 18(6):e0287066. PubMed ID: 37310987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.