BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 37492224)

  • 121. Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications.
    Ordaz-Ramos A; Tellez-Jimenez O; Vazquez-Santillan K
    Front Cell Dev Biol; 2023; 11():1221175. PubMed ID: 37492224
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications.
    Zeng X; Liu C; Yao J; Wan H; Wan G; Li Y; Chen N
    Pharmacol Res; 2021 Jan; 163():105320. PubMed ID: 33271295
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Signaling pathways governing breast cancer stem cells behavior.
    Song K; Farzaneh M
    Stem Cell Res Ther; 2021 Apr; 12(1):245. PubMed ID: 33863385
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Mechanistic Pathways of Malignancy in Breast Cancer Stem Cells.
    Yousefnia S; Seyed Forootan F; Seyed Forootan S; Nasr Esfahani MH; Gure AO; Ghaedi K
    Front Oncol; 2020; 10():452. PubMed ID: 32426267
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Breast cancer stem cells and the challenges of eradication: a review of novel therapies.
    Saeg F; Anbalagan M
    Stem Cell Investig; 2018; 5():39. PubMed ID: 30498750
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Breast cancer stem cells, pathways and therapeutic perspectives 2011.
    Nigam A
    Indian J Surg; 2013 Jun; 75(3):170-80. PubMed ID: 24426422
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Macrophage induced ERK-TGF-β1 signaling in MCF7 breast cancer cells result in reversible cancer stem cell plasticity and epithelial mesenchymal transition.
    Kundu P; Shankar BS
    Biochim Biophys Acta Gen Subj; 2022 Nov; 1866(11):130215. PubMed ID: 35905921
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications.
    Wang L; Jin Z; Master RP; Maharjan CK; Carelock ME; Reccoppa TBA; Kim MC; Kolb R; Zhang W
    Cancers (Basel); 2022 Jul; 14(13):. PubMed ID: 35805056
    [TBL] [Abstract][Full Text] [Related]  

  • 129. A positive feedback loop: RAD18-YAP-TGF-β between triple-negative breast cancer and macrophages regulates cancer stemness and progression.
    Yan X; He Y; Yang S; Zeng T; Hua Y; Bao S; Yang F; Duan N; Sun C; Liang Y; Fu Z; Huang X; Li W; Yin Y
    Cell Death Discov; 2022 Apr; 8(1):196. PubMed ID: 35413945
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Co-treatment with vactosertib, a novel, orally bioavailable activin receptor-like kinase 5 inhibitor, suppresses radiotherapy-induced epithelial-to-mesenchymal transition, cancer cell stemness, and lung metastasis of breast cancer.
    Choi J; Park J; Cho I; Sheen Y
    Radiol Oncol; 2022 Apr; 56(2):185-197. PubMed ID: 35390248
    [TBL] [Abstract][Full Text] [Related]  

  • 131. TGFβ selects for pro-stemness over pro-invasive phenotypes during cancer cell epithelial-mesenchymal transition.
    Tsubakihara Y; Ohata Y; Okita Y; Younis S; Eriksson J; Sellin ME; Ren J; Ten Dijke P; Miyazono K; Hikita A; Imamura T; Kato M; Heldin CH; Moustakas A
    Mol Oncol; 2022 Jun; 16(12):2330-2354. PubMed ID: 35348275
    [TBL] [Abstract][Full Text] [Related]  

  • 132. SIK2 maintains breast cancer stemness by phosphorylating LRP6 and activating Wnt/β-catenin signaling.
    Rong Z; Zhang L; Li Z; Xiao Z; Duan Y; Ren X; Zi Y; Gao J; Mu Y; Guan Y; Cao Z; Wang X; Pei Q; Zeng Y; Fan Q; Zeng Z; Ou D; He J; Nie Y; Tan R; Weng L; Li Y; Xiang R; Deng Y; Sun L
    Oncogene; 2022 Apr; 41(16):2390-2403. PubMed ID: 35277657
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development.
    Zhang T; Zhou H; Wang K; Wang X; Wang M; Zhao W; Xi X; Li Y; Cai M; Zhao W; Xu Y; Shao R
    Biomed Pharmacother; 2022 Mar; 147():112616. PubMed ID: 35008001
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Clinically Translatable Approaches of Inhibiting TGF-β to Target Cancer Stem Cells in TNBC.
    Sulaiman A; McGarry S; Chilumula SC; Kandunuri R; Vinod V
    Biomedicines; 2021 Oct; 9(10):. PubMed ID: 34680503
    [TBL] [Abstract][Full Text] [Related]  

  • 135. The role of R-spondin proteins in cancer biology.
    Ter Steege EJ; Bakker ERM
    Oncogene; 2021 Nov; 40(47):6469-6478. PubMed ID: 34663878
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Role of TGF-β signaling in the mechanisms of tamoxifen resistance.
    Babyshkina N; Dronova T; Erdyneeva D; Gervas P; Cherdyntseva N
    Cytokine Growth Factor Rev; 2021 Dec; 62():62-69. PubMed ID: 34635390
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Physalin A, 13,14-Seco-16, 24-Cyclo-Steroid, Inhibits Stemness of Breast Cancer Cells by Regulation of Hedgehog Signaling Pathway and Yes-Associated Protein 1 (YAP1).
    Ko YC; Choi HS; Liu R; Lee DS
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445421
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Wnt/β-Catenin Inhibition Disrupts Carboplatin Resistance in Isogenic Models of Triple-Negative Breast Cancer.
    Abreu de Oliveira WA; Moens S; El Laithy Y; van der Veer BK; Athanasouli P; Cortesi EE; Baietti MF; Koh KP; Ventura JJ; Amant F; Annibali D; Lluis F
    Front Oncol; 2021; 11():705384. PubMed ID: 34367990
    [TBL] [Abstract][Full Text] [Related]  

  • 139. ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling.
    Zhu T; Zheng J; Zhuo W; Pan P; Li M; Zhang W; Zhou H; Gao Y; Li X; Liu Z
    Cell Death Discov; 2021 May; 7(1):126. PubMed ID: 34052833
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Cancer stem cell characteristics and their potential as therapeutic targets.
    Lim JR; Mouawad J; Gorton OK; Bubb WA; Kwan AH
    Med Oncol; 2021 May; 38(7):76. PubMed ID: 34050825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.