These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37492231)

  • 1. Data on three-year flowering intensity monitoring in an apple orchard: A collection of RGB images acquired from unmanned aerial vehicles.
    Zhang C; Valente J; Wang W; van Dalfsen P; de Jong PF; Rijk B; Kooistra L
    Data Brief; 2023 Aug; 49():109356. PubMed ID: 37492231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach for estimating the flowering rate of litchi based on deep learning and UAV images.
    Lin P; Li D; Jia Y; Chen Y; Huang G; Elkhouchlaa H; Yao Z; Zhou Z; Zhou H; Li J; Lu H
    Front Plant Sci; 2022; 13():966639. PubMed ID: 36092399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Canopy Information Measurement Method for Modern Standardized Apple Orchards Based on UAV Multimodal Information.
    Sun G; Wang X; Yang H; Zhang X
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique.
    Apolo-Apolo OE; Pérez-Ruiz M; Martínez-Guanter J; Valente J
    Front Plant Sci; 2020; 11():1086. PubMed ID: 32765566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in
    Altieri G; Maffia A; Pastore V; Amato M; Celano G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient RGB-UAV-based platform for field almond tree phenotyping: 3-D architecture and flowering traits.
    López-Granados F; Torres-Sánchez J; Jiménez-Brenes FM; Arquero O; Lovera M; de Castro AI
    Plant Methods; 2019; 15():160. PubMed ID: 31889984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the Flowering of an Invasive Plant Using Unmanned Aerial Vehicles: Is There Potential for Biocontrol Monitoring?
    de Sá NC; Castro P; Carvalho S; Marchante E; López-Núñez FA; Marchante H
    Front Plant Sci; 2018; 9():293. PubMed ID: 29568305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
    Borra-Serrano I; Peña JM; Torres-Sánchez J; Mesas-Carrascosa FJ; López-Granados F
    Sensors (Basel); 2015 Aug; 15(8):19688-708. PubMed ID: 26274960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards.
    Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X
    Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry.
    Gené-Mola J; Sanz-Cortiella R; Rosell-Polo JR; Morros JR; Ruiz-Hidalgo J; Vilaplana V; Gregorio E
    Data Brief; 2020 Jun; 30():105591. PubMed ID: 32368602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image dataset acquired from an unmanned aerial vehicle over an experimental site within El Soldado estuary in Guaymas, Sonora, México.
    Encinas-Lara MS; Méndez-Barroso LA; Yépez EA
    Data Brief; 2020 Jun; 30():105425. PubMed ID: 32280736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dataset on UAV RGB videos acquired over a vineyard including bunch labels for object detection and tracking.
    Ariza-Sentís M; Vélez S; Valente J
    Data Brief; 2023 Feb; 46():108848. PubMed ID: 36619256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grassland vertical height heterogeneity predicts flower and bee diversity: an UAV photogrammetric approach.
    Torresani M; Rocchini D; Ceola G; de Vries JPR; Feilhauer H; Moudrý V; Bartholomeus H; Perrone M; Anderle M; Gamper HA; Chieffallo L; Guatelli E; Gatti RC; Kleijn D
    Sci Rep; 2024 Jan; 14(1):809. PubMed ID: 38191639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orchard monitoring based on unmanned aerial vehicles and image processing by artificial neural networks: a systematic review.
    Popescu D; Ichim L; Stoican F
    Front Plant Sci; 2023; 14():1237695. PubMed ID: 38089793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution multispectral and RGB dataset from UAV surveys of ten cocoa agroforestry typologies in Côte d'Ivoire.
    Lammoglia SK; Akpa YL; Danumah JH; Brou YLA; Kassi JN
    Data Brief; 2024 Aug; 55():110664. PubMed ID: 39040558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evapotranspiration Estimation with Small UAVs in Precision Agriculture.
    Niu H; Hollenbeck D; Zhao T; Wang D; Chen Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VineLiDAR: High-resolution UAV-LiDAR vineyard dataset acquired over two years in northern Spain.
    Vélez S; Ariza-Sentís M; Valente J
    Data Brief; 2023 Dec; 51():109686. PubMed ID: 37915834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery.
    Li J; Li Y; Qiao J; Li L; Wang X; Yao J; Liao G
    Front Plant Sci; 2023; 14():1101143. PubMed ID: 36798713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning.
    Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X
    Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.