These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37492510)

  • 1. Effects of spin-orbit coupling on transmission and absorption of electromagnetic waves in strained armchair phosphorene nanoribbons.
    Rezania H; Abdi M; Nourian E; Astinchap B
    RSC Adv; 2023 Jul; 13(32):22287-22301. PubMed ID: 37492510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of spin-orbit coupling on optical properties of monolayer [Formula: see text] due to mechanical strains.
    Rezania H; Abdi M; Astinchap B; Nourian E
    Sci Rep; 2023 Jan; 13(1):1159. PubMed ID: 36670164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons.
    Gong LJ; Shi HL; Yang J; Han QZ; Ren YH; He SY; Zhao YH; Jiang ZT
    Phys Chem Chem Phys; 2023 Aug; 25(33):22487-22496. PubMed ID: 37581353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of methyl-substituted germanane monolayer in the presence of the external magnetic field, strain and spin-orbit coupling.
    Abdi M; Astinchap B
    J Phys Condens Matter; 2023 Aug; 35(46):. PubMed ID: 37553000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-splitting effects on the interband optical conductivity and activity of phosphorene.
    Phuong LTT; Phong TC; Yarmohammadi M
    Sci Rep; 2020 Jun; 10(1):9201. PubMed ID: 32513921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic competition between strain and electric field stimuli in tuning EELS of phosphorene.
    Yarmohammadi M; Hoi BD; Phuong LTT
    Sci Rep; 2021 Feb; 11(1):3716. PubMed ID: 33580112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical interband transitions in strained phosphorene.
    Khang PD; Davoudiniya M; Phuong LTT; Phong TC; Yarmohammadi M
    Phys Chem Chem Phys; 2019 Jul; 21(27):15133-15141. PubMed ID: 31243415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain engineering of optical activity in phosphorene.
    Khoa DQ; Davoudiniya M; Hoi BD; Yarmohammadi M
    RSC Adv; 2019 Jun; 9(33):19006-19015. PubMed ID: 35516876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed-edged bilayer phosphorene nanoribbons producing from collapsing armchair phosphorene nanotubes.
    Liao X; Xiao H; Lu X; Chen Y; Shi X; Chen X
    Nanotechnology; 2018 Feb; 29(8):085707. PubMed ID: 29300176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field.
    Zhang L; Hao Y
    Sci Rep; 2018 Apr; 8(1):6089. PubMed ID: 29666507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin-orbit coupling prevents spin channel suppression of transition metal atoms on armchair graphene nanoribbons.
    Rojas WY; Villegas CEP; Rocha AR
    Phys Chem Chem Phys; 2018 Dec; 20(47):29826-29832. PubMed ID: 30467570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.