These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37493348)

  • 1. A Multiclass Radiomics Method-Based WHO Severity Scale for Improving COVID-19 Patient Assessment and Disease Characterization From CT Scans.
    Henao JAG; Depotter A; Bower DV; Bajercius H; Todorova PT; Saint-James H; de Mortanges AP; Barroso MC; He J; Yang J; You C; Staib LH; Gange C; Ledda RE; Caminiti C; Silva M; Cortopassi IO; Dela Cruz CS; Hautz W; Bonel HM; Sverzellati N; Duncan JS; Reyes M; Poellinger A
    Invest Radiol; 2023 Dec; 58(12):882-893. PubMed ID: 37493348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From community-acquired pneumonia to COVID-19: a deep learning-based method for quantitative analysis of COVID-19 on thick-section CT scans.
    Li Z; Zhong Z; Li Y; Zhang T; Gao L; Jin D; Sun Y; Ye X; Yu L; Hu Z; Xiao J; Huang L; Tang Y
    Eur Radiol; 2020 Dec; 30(12):6828-6837. PubMed ID: 32683550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT.
    Bermejo-Peláez D; San José Estépar R; Fernández-Velilla M; Palacios Miras C; Gallardo Madueño G; Benegas M; Gotera Rivera C; Cuerpo S; Luengo-Oroz M; Sellarés J; Sánchez M; Bastarrika G; Peces Barba G; Seijo LM; Ledesma-Carbayo MJ
    Sci Rep; 2022 Jun; 12(1):9387. PubMed ID: 35672437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic 3D radiomics analysis using artificial intelligence to assess the stage of COVID-19 on CT images.
    Cai S; Chen Y; Zhao S; He D; Li Y; Xiong N; Li Z; Hu S
    Eur Radiol; 2022 Jul; 32(7):4760-4770. PubMed ID: 35094118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a quantitative segmentation model to assess the effect of comorbidity on patients with COVID-19.
    Zhang C; Yang G; Cai C; Xu Z; Wu H; Guo Y; Xie Z; Shi H; Cheng G; Wang J
    Eur J Med Res; 2020 Oct; 25(1):49. PubMed ID: 33046116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Assessment of Chest CT Patterns in COVID-19 and Bacterial Pneumonia Patients: a Deep Learning Perspective.
    Kang M; Hong KS; Chikontwe P; Luna M; Jang JG; Park J; Shin KC; Park SH; Ahn JH
    J Korean Med Sci; 2021 Feb; 36(5):e46. PubMed ID: 33527788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spatial and temporal distribution and predictive value of chest CT scoring in patients with COVID-19].
    Li S; Liu SY; Zhao YQ; Li QY; Liu DY; Liu ZC; Li DS; Zeng L; Ge QG; Ma QB; Shen N
    Zhonghua Jie He He Hu Xi Za Zhi; 2021 Mar; 44(3):230-236. PubMed ID: 33721937
    [No Abstract]   [Full Text] [Related]  

  • 8. Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction.
    Shan F; Gao Y; Wang J; Shi W; Shi N; Han M; Xue Z; Shen D; Shi Y
    Med Phys; 2021 Apr; 48(4):1633-1645. PubMed ID: 33225476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.
    Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MultiR-Net: A Novel Joint Learning Network for COVID-19 segmentation and classification.
    Li CF; Xu YD; Ding XH; Zhao JJ; Du RQ; Wu LZ; Sun WP
    Comput Biol Med; 2022 May; 144():105340. PubMed ID: 35305504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary lesion subtypes recognition of COVID-19 from radiomics data with three-dimensional texture characterization in computed tomography images.
    Li W; Cao Y; Yu K; Cai Y; Huang F; Yang M; Xie W
    Biomed Eng Online; 2021 Dec; 20(1):123. PubMed ID: 34865622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Detection and Quantification of COVID-19 Airspace Disease on Chest Radiographs: A Novel Approach Achieving Expert Radiologist-Level Performance Using a Deep Convolutional Neural Network Trained on Digital Reconstructed Radiographs From Computed Tomography-Derived Ground Truth.
    Mortani Barbosa EJ; Gefter WB; Ghesu FC; Liu S; Mailhe B; Mansoor A; Grbic S; Vogt S
    Invest Radiol; 2021 Aug; 56(8):471-479. PubMed ID: 33481459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms.
    Shiri I; Mostafaei S; Haddadi Avval A; Salimi Y; Sanaat A; Akhavanallaf A; Arabi H; Rahmim A; Zaidi H
    Sci Rep; 2022 Sep; 12(1):14817. PubMed ID: 36050434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-Learning-Based Whole-Lung and Lung-Lesion Quantification Despite Inconsistent Ground Truth: Application to Computerized Tomography in SARS-CoV-2 Nonhuman Primate Models.
    Reza SMS; Chu WT; Homayounieh F; Blain M; Firouzabadi FD; Anari PY; Lee JH; Worwa G; Finch CL; Kuhn JH; Malayeri A; Crozier I; Wood BJ; Feuerstein IM; Solomon J
    Acad Radiol; 2023 Sep; 30(9):2037-2045. PubMed ID: 36966070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lung Lesion Localization of COVID-19 From Chest CT Image: A Novel Weakly Supervised Learning Method.
    Yang Z; Zhao L; Wu S; Chen CY
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1864-1872. PubMed ID: 33739926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Radiomics Signature to Quantitatively Analyze COVID-19-Infected Pulmonary Lesions.
    Qiu J; Peng S; Yin J; Wang J; Jiang J; Li Z; Song H; Zhang W
    Interdiscip Sci; 2021 Mar; 13(1):61-72. PubMed ID: 33411162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features.
    Wang L; Kelly B; Lee EH; Wang H; Zheng J; Zhang W; Halabi S; Liu J; Tian Y; Han B; Huang C; Yeom KW; Deng K; Song J
    Eur J Radiol; 2021 Mar; 136():109552. PubMed ID: 33497881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An explainable AI system for automated COVID-19 assessment and lesion categorization from CT-scans.
    Pennisi M; Kavasidis I; Spampinato C; Schinina V; Palazzo S; Salanitri FP; Bellitto G; Rundo F; Aldinucci M; Cristofaro M; Campioni P; Pianura E; Di Stefano F; Petrone A; Albarello F; Ippolito G; Cuzzocrea S; Conoci S
    Artif Intell Med; 2021 Aug; 118():102114. PubMed ID: 34412837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN.
    Connell M; Xin Y; Gerard SE; Herrmann J; Shah PK; Martin KT; Rezoagli E; Ippolito D; Rajaei J; Baron R; Delvecchio P; Humayun S; Rizi RR; Bellani G; Cereda M
    Methods; 2022 Sep; 205():200-209. PubMed ID: 35817338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical and laboratory data, radiological structured report findings and quantitative evaluation of lung involvement on baseline chest CT in COVID-19 patients to predict prognosis.
    Salvatore C; Roberta F; Angela L; Cesare P; Alfredo C; Giuliano G; Giulio L; Giuliana G; Maria RG; Paola BM; Fabrizio U; Roberta G; Beatrice F; Vittorio M
    Radiol Med; 2021 Jan; 126(1):29-39. PubMed ID: 33047295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.