BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37493461)

  • 1. Plasmonic nanomaterials-based flexible strips for the SERS detection of gouty arthritis.
    Lien MC; Yeh IH; Lu YC; Liu KK
    Analyst; 2023 Aug; 148(17):4109-4115. PubMed ID: 37493461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Schirmer Strip for Human Tear-Based Gouty Arthritis Diagnosis Using Surface-Enhanced Raman Scattering.
    Park M; Jung H; Jeong Y; Jeong KH
    ACS Nano; 2017 Jan; 11(1):438-443. PubMed ID: 27973769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO Nanocages Decorated with Au@AgAu Yolk-Shell Nanomaterials for SERS-Based Detection of Hyperuricemia.
    Lien MC; Yeh IH; Tadepalli S; Liu KK
    ACS Omega; 2024 Apr; 9(14):16160-16167. PubMed ID: 38617613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Paper-Based Flexible SERS Biosensor for Highly Sensitive Detection of Lactic and Uric Acid.
    Verma M; Naqvi TK; Tripathi SK; Kulkarni MM; Prasad NE; Dwivedi PK
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):294-300. PubMed ID: 34710047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
    Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R
    Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative SERS Detection of Uric Acid via Formation of Precise Plasmonic Nanojunctions within Aggregates of Gold Nanoparticles and Cucurbit[n]uril.
    Chio WK; Davison G; Jones T; Liu J; Parkin IP; Lee TC
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33074261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of Au nanocrystals into large-area 3-D ordered flexible superlattice nanostructures arrays for ultrasensitive trace multi-hazard detection.
    Liu W; Li Q; Wu J; Wang W; Jiang R; Zhou C; Wang S; Zhang X; Sun T; Xu Z; Wang D
    J Hazard Mater; 2023 Feb; 443(Pt A):130124. PubMed ID: 36308928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining multisite functionalized magnetic nanomaterials with interference-free SERS nanotags for multi-target sepsis biomarker detection.
    Wang Y; Guan M; Mi F; Geng P; Chen G
    Anal Chim Acta; 2023 Sep; 1272():341523. PubMed ID: 37355316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Organic Framework-Based Surface-Enhanced Raman Scattering Sensing Platform for Trace Malondialdehyde Detection in Tears.
    Li J; Yu H; Zhao J; Qiao X; Chen X; Lu Z; Li Q; Lin H; Wu W; Zeng W; Yang Z; Feng Y
    Nano Lett; 2024 Jun; 24(25):7792-7799. PubMed ID: 38860501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-Guided One-Dimensional Plasmonic Nanostructures for the SERS Bioassay.
    Liang H; Jiang L; Li H; Zhang J; Zhuo Y; Yuan R; Yang X
    ACS Sens; 2023 Mar; 8(3):1192-1199. PubMed ID: 36915228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures.
    Wu D; Chen Y; Hou S; Fang W; Duan H
    Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Enhanced Raman Probes Based on Gold Nanomaterials for in vivo Diagnosis and Imaging.
    Wen C; Wang L; Liu L; Shen XC; Chen H
    Chem Asian J; 2022 Apr; 17(7):e202200014. PubMed ID: 35178878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D plasmonic hexaplex paper sensor for label-free human saliva sensing and machine learning-assisted early-stage lung cancer screening.
    Linh VTN; Kim H; Lee MY; Mun J; Kim Y; Jeong BH; Park SG; Kim DH; Rho J; Jung HS
    Biosens Bioelectron; 2024 Jan; 244():115779. PubMed ID: 37922808
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Park H; Chai K; Kim W; Park J; Lee W; Park J
    Biosensors (Basel); 2023 Dec; 14(1):. PubMed ID: 38248385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Strategies for Dendritic Magneto-plasmonic Nanostructures Applied to Surface-Enhanced Raman Spectroscopy.
    Fernandes T; Nogueira HIS; Amorim CO; Amaral JS; Daniel-da-Silva AL; Trindade T
    Chemistry; 2022 Nov; 28(61):e202202382. PubMed ID: 36083195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Based Ultra-Sensitive Surface-Enhanced Raman Scattering Detection of the Toxin Bacterial Biomarker Pyocyanin in Biological Fluids Using Sharp-Branched Gold Nanostars.
    Atta S; Vo-Dinh T
    Anal Chem; 2023 Feb; 95(5):2690-2697. PubMed ID: 36693215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials.
    Ye H; Liu Y; Zhan L; Liu Y; Qin Z
    Theranostics; 2020; 10(10):4359-4373. PubMed ID: 32292500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.