These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37493590)
1. Ultrasonic-Assisted Electrochemical Nanoimprint Lithography: Forcing Mass Transfer to Enhance the Localized Etching Rate of GaAs. Liu B; Han L; Xu H; Su JJ; Zhan D Chem Asian J; 2023 Sep; 18(18):e202300491. PubMed ID: 37493590 [TBL] [Abstract][Full Text] [Related]
2. Photoelectric effect accelerated electrochemical corrosion and nanoimprint processes on gallium arsenide wafers. Guo C; Zhang L; Sartin MM; Han L; Tian ZW; Tian ZQ; Zhan D Chem Sci; 2019 Jun; 10(23):5893-5897. PubMed ID: 31360393 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching. Zhang J; Zhang L; Han L; Tian ZW; Tian ZQ; Zhan D Nanoscale; 2017 Jun; 9(22):7476-7482. PubMed ID: 28530294 [TBL] [Abstract][Full Text] [Related]
4. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer. Zhang J; Zhang L; Wang W; Han L; Jia JC; Tian ZW; Tian ZQ; Zhan D Chem Sci; 2017 Mar; 8(3):2407-2412. PubMed ID: 28451347 [TBL] [Abstract][Full Text] [Related]
5. Resist-Free Direct Stamp Imprinting of GaAs via Metal-Assisted Chemical Etching. Kim K; Ki B; Choi K; Lee S; Oh J ACS Appl Mater Interfaces; 2019 Apr; 11(14):13574-13580. PubMed ID: 30784266 [TBL] [Abstract][Full Text] [Related]
6. Anodic Imprint Lithography: Direct Imprinting of Single Crystalline GaAs with Anodic Stamp. Kim K; Ki B; Choi K; Oh J ACS Nano; 2019 Nov; 13(11):13465-13473. PubMed ID: 31593424 [TBL] [Abstract][Full Text] [Related]
7. Confined Chemical Etching for Electrochemical Machining with Nanoscale Accuracy. Zhan D; Han L; Zhang J; Shi K; Zhou JZ; Tian ZW; Tian ZQ Acc Chem Res; 2016 Nov; 49(11):2596-2604. PubMed ID: 27668827 [TBL] [Abstract][Full Text] [Related]
8. Metal-Assisted Electrochemical Nanoimprinting of Porous and Solid Silicon Wafers. Sharstniou A; Niauzorau S; Junghare A; Azeredo BP J Vis Exp; 2022 Feb; (180):. PubMed ID: 35225282 [TBL] [Abstract][Full Text] [Related]
9. Bi-Layer nanoimprinting lithography for metal-assisted chemical etching with application on silicon mold replication. Chen WS; Lee YC Nanotechnology; 2023 Oct; 34(50):. PubMed ID: 37703872 [TBL] [Abstract][Full Text] [Related]
10. Chemical Imprinting of Crystalline Silicon with Catalytic Metal Stamp in Etch Bath. Ki B; Song Y; Choi K; Yum JH; Oh J ACS Nano; 2018 Jan; 12(1):609-616. PubMed ID: 29224336 [TBL] [Abstract][Full Text] [Related]
11. 3D Patterning of Si by Contact Etching With Nanoporous Metals. Bastide S; Torralba E; Halbwax M; Le Gall S; Mpogui E; Cachet-Vivier C; Magnin V; Harari J; Yarekha D; Vilcot JP Front Chem; 2019; 7():256. PubMed ID: 31106193 [TBL] [Abstract][Full Text] [Related]
12. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds. Lan H; Liu H J Nanosci Nanotechnol; 2013 May; 13(5):3145-72. PubMed ID: 23858828 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of Large-Area Nanostructures Using Cross-Nanoimprint Strategy. Zhan Y; Deng L; Dai W; Qiu Y; Sun S; Sun D; Hu B; Guan J Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921874 [TBL] [Abstract][Full Text] [Related]
14. Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Jung GY; Johnston-Halperin E; Wu W; Yu Z; Wang SY; Tong WM; Li Z; Green JE; Sheriff BA; Boukai A; Bunimovich Y; Heath JR; Williams RS Nano Lett; 2006 Mar; 6(3):351-4. PubMed ID: 16522021 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical buckling microfabrication. Zhang J; Dong BY; Jia J; Han L; Wang F; Liu C; Tian ZQ; Tian ZW; Wang D; Zhan D Chem Sci; 2016 Jan; 7(1):697-701. PubMed ID: 28791112 [TBL] [Abstract][Full Text] [Related]
16. Simple and scalable preparation of master mold for nanoimprint lithography. Yamada Y; Ito K; Miura A; Iizuka H; Wakayama H Nanotechnology; 2017 May; 28(20):205303. PubMed ID: 28445164 [TBL] [Abstract][Full Text] [Related]
17. A comparative study on electrochemical micromachining of n-GaAs and p-Si by using confined etchant layer technique. Zhang L; Ma XZ; Lin MX; Lin Y; Cao GH; Tang J; Tian ZW J Phys Chem B; 2006 Sep; 110(37):18432-9. PubMed ID: 16970468 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of TiO2 memristive arrays by step and flash imprint lithography. Yun DK; Kim KD; Jeong HY; Lee JH; Jeong JH; Choi SY J Nanosci Nanotechnol; 2011 Jan; 11(1):696-700. PubMed ID: 21446526 [TBL] [Abstract][Full Text] [Related]
19. Flexible nanoimprint lithography enables high-throughput manufacturing of bioinspired microstructures on warped substrates for efficient III-nitride optoelectronic devices. Cui S; Sun K; Liao Z; Zhou Q; Jin L; Jin C; Hu J; Wen KS; Liu S; Zhou S Sci Bull (Beijing); 2024 Jul; 69(13):2080-2088. PubMed ID: 38670852 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film. Shin JH; Lee SH; Byeon KJ; Han KS; Lee H; Tsunozaki K Nanoscale Res Lett; 2011 Jul; 6(1):458. PubMed ID: 21767390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]