These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37493594)
41. Suitability of a diamine functionalized metal-organic framework for direct air capture. Bose S; Sengupta D; Malliakas CD; Idrees KB; Xie H; Wang X; Barsoum ML; Barker NM; Dravid VP; Islamoglu T; Farha OK Chem Sci; 2023 Sep; 14(35):9380-9388. PubMed ID: 37712037 [TBL] [Abstract][Full Text] [Related]
42. Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. Levine DJ; Runčevski T; Kapelewski MT; Keitz BK; Oktawiec J; Reed DA; Mason JA; Jiang HZ; Colwell KA; Legendre CM; FitzGerald SA; Long JR J Am Chem Soc; 2016 Aug; 138(32):10143-50. PubMed ID: 27486905 [TBL] [Abstract][Full Text] [Related]
43. Hysteresis curves reveal the microscopic origin of cooperative CO Edison JR; Siegelman RL; Preisler Z; Kundu J; Long JR; Whitelam S J Chem Phys; 2021 Jun; 154(21):214704. PubMed ID: 34240982 [TBL] [Abstract][Full Text] [Related]
44. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. Planas N; Dzubak AL; Poloni R; Lin LC; McManus A; McDonald TM; Neaton JB; Long JR; Smit B; Gagliardi L J Am Chem Soc; 2013 May; 135(20):7402-5. PubMed ID: 23627764 [TBL] [Abstract][Full Text] [Related]
45. Extended MOF-74-Type Variant with an Azine Linkage: Efficient Direct Air Capture and One-Pot Synthesis. Choe JH; Kim H; Yun H; Kurisingal JF; Kim N; Lee D; Lee YH; Hong CS J Am Chem Soc; 2024 Jul; 146(28):19337-19349. PubMed ID: 38953459 [TBL] [Abstract][Full Text] [Related]
46. High Ammonia Uptake of a Metal-Organic Framework Adsorbent in a Wide Pressure Range. Kim DW; Kang DW; Kang M; Lee JH; Choe JH; Chae YS; Choi DS; Yun H; Hong CS Angew Chem Int Ed Engl; 2020 Dec; 59(50):22531-22536. PubMed ID: 32969148 [TBL] [Abstract][Full Text] [Related]
47. Design of Amine-Containing Nanoporous Materials for Postcombustion CO Kim C; Ha Y; Choi M Acc Chem Res; 2023 Nov; 56(21):2887-2897. PubMed ID: 37824727 [TBL] [Abstract][Full Text] [Related]
48. Elucidation of the Underlying Mechanism of CO Zhang H; Shang C; Yang LM; Ganz E Inorg Chem; 2020 Nov; 59(22):16665-16671. PubMed ID: 33124798 [TBL] [Abstract][Full Text] [Related]
49. Metal-Organic Framework Adsorbent for Practical Capture of Trace Carbon Dioxide. Park J; Park JR; Choe JH; Kim S; Kang M; Kang DW; Kim JY; Jeong YW; Hong CS ACS Appl Mater Interfaces; 2020 Nov; 12(45):50534-50540. PubMed ID: 33131271 [TBL] [Abstract][Full Text] [Related]
50. Enhanced CO Liu S; Wang M; Wei S; Liu S; Wang Z; Lawrence Wu CM; Sun D; Lu X J Colloid Interface Sci; 2023 Nov; 650(Pt B):1361-1370. PubMed ID: 37480651 [TBL] [Abstract][Full Text] [Related]
51. Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Adil K; Bhatt PM; Belmabkhout Y; Abtab SMT; Jiang H; Assen AH; Mallick A; Cadiau A; Aqil J; Eddaoudi M Adv Mater; 2017 Oct; 29(39):. PubMed ID: 28833740 [TBL] [Abstract][Full Text] [Related]
52. Capture of carbon dioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc). Cao Y; Song F; Zhao Y; Zhong Q J Environ Sci (China); 2013 Oct; 25(10):2081-7. PubMed ID: 24494495 [TBL] [Abstract][Full Text] [Related]
53. Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases. Choi S; Watanabe T; Bae TH; Sholl DS; Jones CW J Phys Chem Lett; 2012 May; 3(9):1136-41. PubMed ID: 26288048 [TBL] [Abstract][Full Text] [Related]
54. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO₂ capture from flue gas. Rezaei F; Lively RP; Labreche Y; Chen G; Fan Y; Koros WJ; Jones CW ACS Appl Mater Interfaces; 2013 May; 5(9):3921-31. PubMed ID: 23540568 [TBL] [Abstract][Full Text] [Related]
55. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures. Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732 [TBL] [Abstract][Full Text] [Related]
56. Revealing carbon capture chemistry with 17-oxygen NMR spectroscopy. Berge AH; Pugh SM; Short MIM; Kaur C; Lu Z; Lee JH; Pickard CJ; Sayari A; Forse AC Nat Commun; 2022 Dec; 13(1):7763. PubMed ID: 36522319 [TBL] [Abstract][Full Text] [Related]
57. Open and Hierarchical Carbon Framework with Ultralarge Pore Volume for Efficient Capture of Carbon Dioxide. Huang K; Liu F; Fan JP; Dai S ACS Appl Mater Interfaces; 2018 Oct; 10(43):36961-36968. PubMed ID: 30256083 [TBL] [Abstract][Full Text] [Related]
59. Selective Adsorption-Based Separation of Flue Gas and Natural Gas in Zirconium Metal-Organic Frameworks Nanocrystals. Li P; Shen Y; Wang D; Chen Y; Zhao Y Molecules; 2019 May; 24(9):. PubMed ID: 31083563 [TBL] [Abstract][Full Text] [Related]
60. High-Throughput Screening of the CoRE-MOF-2019 Database for CO Kancharlapalli S; Snurr RQ ACS Appl Mater Interfaces; 2023 Jun; 15(23):28084-28092. PubMed ID: 37262369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]