These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37493930)

  • 1. Simulation of passive exotendon assistive device for agricultural harvesting task.
    Chan YS; Teo YX; Gouwanda D; Nurzaman SG; Gopalai AA
    Phys Eng Sci Med; 2023 Dec; 46(4):1375-1386. PubMed ID: 37493930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musculoskeletal modelling and simulation of oil palm fresh fruit bunch harvesting.
    Chan YS; Teo YX; Gouwanda D; Nurzaman SG; Gopalai AA; Thannirmalai S
    Sci Rep; 2022 May; 12(1):8010. PubMed ID: 35568759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Upper Limb Muscle Activation Using Musculoskeletal Model with Wearable Assistive Device.
    Ashari MF; Hanafusa A; Mohamaddan S
    Appl Bionics Biomech; 2022; 2022():8908061. PubMed ID: 35847624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device.
    Stingel JP; Hicks JL; Uhlrich SD; Delp SL
    IEEE Robot Autom Lett; 2023 Oct; 8(10):6267-6274. PubMed ID: 37745177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air-assisted devices reduce biomechanical loading in the low back and upper extremities during patient turning tasks.
    Hwang J; Ari H; Matoo M; Chen J; Kim JH
    Appl Ergon; 2020 Sep; 87():103121. PubMed ID: 32501250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyographic evaluation of a bed assistive device for abdominal surgery patients in postoperative care.
    Tran G; Babski-Reeves K; Nussbaum MA
    Hum Factors; 2008 Apr; 50(2):237-55. PubMed ID: 18516835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysing the effect of wearable lift-assist vest in squat lifting task using back muscle EMG data and musculoskeletal model.
    Ataei G; Abedi R; Mohammadi Y; Fatouraee N
    Phys Eng Sci Med; 2020 Jun; 43(2):651-658. PubMed ID: 32524453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting.
    Alemi MM; Geissinger J; Simon AA; Chang SE; Asbeck AT
    J Electromyogr Kinesiol; 2019 Aug; 47():25-34. PubMed ID: 31108346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A portable exotendon assisting hip and knee joints reduces muscular burden during walking.
    Cheng L; Xiong C; Chen W; Liang J; Huang B; Xu X
    R Soc Open Sci; 2021 Nov; 8(11):211266. PubMed ID: 34737881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review.
    Kermavnar T; de Vries AW; de Looze MP; O'Sullivan LW
    Ergonomics; 2021 Jun; 64(6):685-711. PubMed ID: 33369518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running.
    Uchida TK; Seth A; Pouya S; Dembia CL; Hicks JL; Delp SL
    PLoS One; 2016; 11(9):e0163417. PubMed ID: 27656901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models.
    Moya-Esteban A; Durandau G; van der Kooij H; Sartori M
    J Biomech; 2023 Aug; 157():111727. PubMed ID: 37499430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting.
    Abdoli-E M; Stevenson JM
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):372-80. PubMed ID: 18093709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of muscles activations and joints range of motions during oil palm fresh fruit bunch harvesting and loose fruit collection.
    Teo YX; Chan YS; Gouwanda D; Gopalai AA; Nurzaman SG; Thannirmalai S
    Sci Rep; 2021 Jul; 11(1):15020. PubMed ID: 34294775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of Soft versus Rigid Back-Support Exoskeletons during a Lifting Task.
    Schwartz M; Theurel J; Desbrosses K
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Int J Environ Res Public Health; 2023 Jul; 20(15):. PubMed ID: 37569010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a sit-to-stand assistive device with pressure sensor for elderly and disabled: a feasibility test.
    Lee K; Ha S; Lee K; Hong S; Shin H; Lee G
    Phys Eng Sci Med; 2021 Sep; 44(3):677-682. PubMed ID: 34143408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.