These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37494157)

  • 1. Image Synthesis and Modified BlendMask Instance Segmentation for Automated Nanoparticle Phenotyping.
    Tang X; Lv L; Javanmardi S; Wang Y; Fan J; Verbeek FJ; Xiao G
    IEEE Trans Med Imaging; 2023 Dec; 42(12):3665-3677. PubMed ID: 37494157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Image Rendering Solves Annotation Problem in Deep Learning Nanoparticle Segmentation.
    Mill L; Wolff D; Gerrits N; Philipp P; Kling L; Vollnhals F; Ignatenko A; Jaremenko C; Huang Y; De Castro O; Audinot JN; Nelissen I; Wirtz T; Maier A; Christiansen S
    Small Methods; 2021 Jul; 5(7):e2100223. PubMed ID: 34927995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Particle Instance Segmentation for Electron Microscopy Image Quantification.
    Yildirim B; Cole JM
    J Chem Inf Model; 2021 Mar; 61(3):1136-1149. PubMed ID: 33682402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images.
    Cid-Mejías A; Alonso-Calvo R; Gavilán H; Crespo J; Maojo V
    Comput Methods Programs Biomed; 2021 Apr; 202():105958. PubMed ID: 33588253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In search of best automated model: Explaining nanoparticle TEM image segmentation.
    Saaim KM; Afridi SK; Nisar M; Islam S
    Ultramicroscopy; 2022 Mar; 233():113437. PubMed ID: 34953311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trainable segmentation for transmission electron microscope images of inorganic nanoparticles.
    Bell CG; Treder KP; Kim JS; Schuster ME; Kirkland AI; Slater TJA
    J Microsc; 2022 Dec; 288(3):169-184. PubMed ID: 35502816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PIXER: an automated particle-selection method based on segmentation using a deep neural network.
    Zhang J; Wang Z; Chen Y; Han R; Liu Z; Sun F; Zhang F
    BMC Bioinformatics; 2019 Jan; 20(1):41. PubMed ID: 30658571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution histopathology image generation and segmentation through adversarial training.
    Li W; Li J; Polson J; Wang Z; Speier W; Arnold C
    Med Image Anal; 2022 Jan; 75():102251. PubMed ID: 34814059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput, Algorithmic Determination of Nanoparticle Structure from Electron Microscopy Images.
    Laramy CR; Brown KA; O'Brien MN; Mirkin CA
    ACS Nano; 2015 Dec; 9(12):12488-95. PubMed ID: 26588107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics.
    Kienbaum L; Correa Abondano M; Blas R; Schmid K
    Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IAS-NET: Joint intraclassly adaptive GAN and segmentation network for unsupervised cross-domain in neonatal brain MRI segmentation.
    Li B; You X; Wang J; Peng Q; Yin S; Qi R; Ren Q; Hong Z
    Med Phys; 2021 Nov; 48(11):6962-6975. PubMed ID: 34494276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general deep learning framework for neuron instance segmentation based on Efficient UNet and morphological post-processing.
    Wu H; Souedet N; Jan C; Clouchoux C; Delzescaux T
    Comput Biol Med; 2022 Nov; 150():106180. PubMed ID: 36244305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-informed cardiac magnetic resonance image synthesis through conditional generative adversarial networks.
    Amirrajab S; Al Khalil Y; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Med Imaging Graph; 2022 Oct; 101():102123. PubMed ID: 36174308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput segmentation of unmyelinated axons by deep learning.
    Plebani E; Biscola NP; Havton LA; Rajwa B; Shemonti AS; Jaffey D; Powley T; Keast JR; Lu KH; Dundar MM
    Sci Rep; 2022 Jan; 12(1):1198. PubMed ID: 35075171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping.
    Yu K; Kirchgessner N; Grieder C; Walter A; Hund A
    Plant Methods; 2017; 13():15. PubMed ID: 28344634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing gland segmentation in colon histology images using an instance-aware diffusion model.
    Sun M; Wang J; Gong Q; Huang W
    Comput Biol Med; 2023 Nov; 166():107527. PubMed ID: 37778210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.