BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37494428)

  • 1. simCAS: an embedding-based method for simulating single-cell chromatin accessibility sequencing data.
    Li C; Chen X; Chen S; Jiang R; Zhang X
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37494428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data.
    Chen S; Wang R; Long W; Jiang R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Annotation for Differentiating and Imbalanced Cell Types in Single-Cell Chromatin Accessibility Data.
    Jia Y; Li S; Jiang R; Chen S
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):461-471. PubMed ID: 38442065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destin2: Integrative and cross-modality analysis of single-cell chromatin accessibility data.
    Guan PY; Lee JS; Wang L; Lin KZ; Mei W; Chen L; Jiang Y
    Front Genet; 2023; 14():1089936. PubMed ID: 36873935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data.
    Tang S; Cui X; Wang R; Li S; Li S; Huang X; Chen S
    Nat Commun; 2024 Feb; 15(1):1629. PubMed ID: 38388573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data.
    Yu W; Uzun Y; Zhu Q; Chen C; Tan K
    Genome Biol; 2020 Apr; 21(1):94. PubMed ID: 32312293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data.
    Li S; Li Y; Sun Y; Li Y; Chen X; Tang S; Chen S
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38588573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble deep learning of embeddings for clustering multimodal single-cell omics data.
    Yu L; Liu C; Yang JYH; Yang P
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37314966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scMultiSim: simulation of multi-modality single cell data guided by cell-cell interactions and gene regulatory networks.
    Li H; Zhang Z; Squires M; Chen X; Zhang X
    Res Sq; 2023 Mar; ():. PubMed ID: 36993284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating Next-Generation Sequencing Datasets from Empirical Mutation and Sequencing Models.
    Stephens ZD; Hudson ME; Mainzer LS; Taschuk M; Weber MR; Iyer RK
    PLoS One; 2016; 11(11):e0167047. PubMed ID: 27893777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RefTM: reference-guided topic modeling of single-cell chromatin accessibility data.
    Zhang Z; Chen S; Lin Z
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36513377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of single-cell trajectory inference methods.
    Saelens W; Cannoodt R; Todorov H; Saeys Y
    Nat Biotechnol; 2019 May; 37(5):547-554. PubMed ID: 30936559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERGIO: A Single-Cell Expression Simulator Guided by Gene Regulatory Networks.
    Dibaeinia P; Sinha S
    Cell Syst; 2020 Sep; 11(3):252-271.e11. PubMed ID: 32871105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scAMACE: model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation.
    Wangwu J; Sun Z; Lin Z
    Bioinformatics; 2021 Nov; 37(21):3874-3880. PubMed ID: 34086847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA.
    Hu SS; Liu L; Li Q; Ma W; Guertin MJ; Meyer CA; Deng K; Zhang T; Zang C
    Nat Commun; 2022 Sep; 13(1):5533. PubMed ID: 36130957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
    Granja JM; Corces MR; Pierce SE; Bagdatli ST; Choudhry H; Chang HY; Greenleaf WJ
    Nat Genet; 2021 Mar; 53(3):403-411. PubMed ID: 33633365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Single-Cell Profiling of the Transcriptome and Accessible Chromatin Using SHARE-seq.
    Kim SH; Marinov GK; Bagdatli ST; Higashino SI; Shipony Z; Kundaje A; Greenleaf WJ
    Methods Mol Biol; 2023; 2611():187-230. PubMed ID: 36807070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible ChIP-sequencing simulation toolkit.
    Zheng A; Lamkin M; Qiu Y; Ren K; Goren A; Gymrek M
    BMC Bioinformatics; 2021 Apr; 22(1):201. PubMed ID: 33879052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCSsim: an integrated tool for simulating single-cell genome sequencing data.
    Yu Z; Du F; Sun X; Li A
    Bioinformatics; 2020 Feb; 36(4):1281-1282. PubMed ID: 31584615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RA3 is a reference-guided approach for epigenetic characterization of single cells.
    Chen S; Yan G; Zhang W; Li J; Jiang R; Lin Z
    Nat Commun; 2021 Apr; 12(1):2177. PubMed ID: 33846355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.