These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37494673)
21. The Role of Diabetic Choroidopathy in the Pathogenesis and Progression of Diabetic Retinopathy. Scuderi L; Fragiotta S; Di Pippo M; Abdolrahimzadeh S Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373315 [TBL] [Abstract][Full Text] [Related]
22. Immunohistochemical localization of low density lipoprotein receptor-related protein 1 and alpha(2)-Macroglobulin in retinal and choroidal tissue of proliferative retinopathies. Barcelona PF; Luna JD; Chiabrando GA; Juarez CP; Bhutto IA; Baba T; McLeod DS; Sánchez MC; Lutty GA Exp Eye Res; 2010 Aug; 91(2):264-72. PubMed ID: 20561980 [TBL] [Abstract][Full Text] [Related]
24. Suppression of protein kinase C-ζ attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy. Song HB; Jun HO; Kim JH; Yu YS; Kim KW; Kim JH Biochem Biophys Res Commun; 2014 Jan; 444(1):63-8. PubMed ID: 24434146 [TBL] [Abstract][Full Text] [Related]
25. Isolation and properties of an in vitro human outer blood-retinal barrier model. Hamilton RD; Leach L Methods Mol Biol; 2011; 686():401-16. PubMed ID: 21082384 [TBL] [Abstract][Full Text] [Related]
26. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Xia T; Rizzolo LJ Vision Res; 2017 Oct; 139():72-81. PubMed ID: 28347688 [TBL] [Abstract][Full Text] [Related]
27. Microfluidic outer blood-retinal barrier model for inducing wet age-related macular degeneration by hypoxic stress. Lee S; Kim S; Jeon JS Lab Chip; 2022 Nov; 22(22):4359-4368. PubMed ID: 36254466 [TBL] [Abstract][Full Text] [Related]
28. Choriocapillaris Degeneration in Geographic Atrophy. Sohn EH; Flamme-Wiese MJ; Whitmore SS; Workalemahu G; Marneros AG; Boese EA; Kwon YH; Wang K; Abramoff MD; Tucker BA; Stone EM; Mullins RF Am J Pathol; 2019 Jul; 189(7):1473-1480. PubMed ID: 31051169 [TBL] [Abstract][Full Text] [Related]
29. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908 [TBL] [Abstract][Full Text] [Related]
30. Endothelial Notch Signaling Regulates the Function of the Retinal Pigment Epithelial Barrier via EC Angiocrine Signaling. Niu Y; Xi Y; Jing Y; Zhou Z; Sun X; Zhang G; Yuan T; Chang T; Dou G Antioxidants (Basel); 2023 Nov; 12(11):. PubMed ID: 38001832 [TBL] [Abstract][Full Text] [Related]
31. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Saint-Geniez M; Kurihara T; Sekiyama E; Maldonado AE; D'Amore PA Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18751-6. PubMed ID: 19841260 [TBL] [Abstract][Full Text] [Related]
32. Tight Junctions of the Outer Blood Retina Barrier. Naylor A; Hopkins A; Hudson N; Campbell M Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31892251 [TBL] [Abstract][Full Text] [Related]
33. Erythropoietin maintains VE-cadherin expression and barrier function in experimental diabetic retinopathy via inhibiting VEGF/VEGFR2/Src signaling pathway. Liu D; Xu H; Zhang C; Xie H; Yang Q; Li W; Tian H; Lu L; Xu JY; Xu G; Liu K; Sun X; Xu GT; Zhang J Life Sci; 2020 Oct; 259():118273. PubMed ID: 32800831 [TBL] [Abstract][Full Text] [Related]
34. Retinal VEGFA maintains the ultrastructure and function of choriocapillaris by preserving the endothelial PLVAP. Kim SA; Kim SJ; Choi YA; Yoon HJ; Kim A; Lee J Biochem Biophys Res Commun; 2020 Jan; 522(1):240-246. PubMed ID: 31759628 [TBL] [Abstract][Full Text] [Related]
35. Potential Interplay between Hyperosmolarity and Inflammation on Retinal Pigmented Epithelium in Pathogenesis of Diabetic Retinopathy. Willermain F; Scifo L; Weber C; Caspers L; Perret J; Delporte C Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29614818 [TBL] [Abstract][Full Text] [Related]
36. Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip. Maurissen TL; Spielmann AJ; Schellenberg G; Bickle M; Vieira JR; Lai SY; Pavlou G; Fauser S; Westenskow PD; Kamm RD; Ragelle H Nat Commun; 2024 Feb; 15(1):1372. PubMed ID: 38355716 [TBL] [Abstract][Full Text] [Related]
37. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Dujardin C; Habeler W; Monville C; Letourneur D; Simon-Yarza T Bioact Mater; 2024 Jan; 31():151-177. PubMed ID: 37637086 [TBL] [Abstract][Full Text] [Related]
38. Bruch's Membrane and the Choroid in Age-Related Macular Degeneration. Edwards M; Lutty GA Adv Exp Med Biol; 2021; 1256():89-119. PubMed ID: 33847999 [TBL] [Abstract][Full Text] [Related]
39. PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the Hif-1α/VEGF pathway. Li J; Lu X; Wei L; Ye D; Lin J; Tang X; Cui K; Yu S; Xu Y; Liang X Inflamm Res; 2022 Jan; 71(1):69-79. PubMed ID: 34773469 [TBL] [Abstract][Full Text] [Related]
40. Wet-AMD on a Chip: Modeling Outer Blood-Retinal Barrier In Vitro. Chung M; Lee S; Lee BJ; Son K; Jeon NL; Kim JH Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28557377 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]