These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37494829)

  • 1. 3D Tibial Acceleration and Consideration of 3D Angular Motion Using IMUs on Peak Tibial Acceleration and Impulse in Running.
    VAN Middelaar RP; Zhang J; Veltink PH; Reenalda J
    Med Sci Sports Exerc; 2023 Dec; 55(12):2253-2262. PubMed ID: 37494829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Sensor Placement on Measured Distal Tibial Accelerations During Running.
    Sara LK; Outerleys J; Johnson CD
    J Appl Biomech; 2023 Jun; 39(3):199-203. PubMed ID: 37105547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations.
    Johnson CD; Outerleys J; Tenforde AS; Davis IS
    J Biomech; 2020 Dec; 113():110118. PubMed ID: 33197691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity and reliability of peak tibial accelerations as real-time measure of impact loading during over-ground rearfoot running at different speeds.
    Van den Berghe P; Six J; Gerlo J; Leman M; De Clercq D
    J Biomech; 2019 Mar; 86():238-242. PubMed ID: 30824234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units.
    Reenalda J; Maartens E; Buurke JH; Gruber AH
    Gait Posture; 2019 Feb; 68():155-160. PubMed ID: 30481697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor location influences the associations between IMU and motion capture measurements of impact landing in healthy male and female runners at multiple running speeds.
    Doyle EW; Doyle TLA; Bonacci J; Fuller JT
    Sports Biomech; 2024 Jan; ():1-15. PubMed ID: 38190247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Prolonged Running and Training on Tibial Acceleration and Movement Quality in Novice Runners.
    Camelio K; Gruber AH; Powell DW; Paquette MR
    J Athl Train; 2020 Dec; 55(12):1292-1299. PubMed ID: 32946571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tibial Accelerations During the Single-Leg Hop Test: Influence of Fixation.
    Tucker HW; Tobin ER; Moran MF
    J Sport Rehabil; 2020 Dec; 30(5):832-835. PubMed ID: 33291064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes.
    Johnson CD; Outerleys J; Davis IS
    J Biomech; 2021 Mar; 117():110250. PubMed ID: 33486264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The location of the tibial accelerometer does influence impact acceleration parameters during running.
    Lucas-Cuevas AG; Encarnación-Martínez A; Camacho-García A; Llana-Belloch S; Pérez-Soriano P
    J Sports Sci; 2017 Sep; 35(17):1734-1738. PubMed ID: 27690754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of a Simple Sensor Reorientation Procedure on Peak Tibial Accelerations during Running and Correlations with Ground Reaction Forces.
    Bradach MM; Gaudette LW; Tenforde AS; Outerleys J; de Souza Júnior JR; Johnson CD
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of running velocity on resultant tibial acceleration in runners.
    Sheerin KR; Besier TF; Reid D
    Sports Biomech; 2020 Dec; 19(6):750-760. PubMed ID: 30537920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of angular motion and gravity to tibial acceleration.
    Lafortune MA; Hennig EM
    Med Sci Sports Exerc; 1991 Mar; 23(3):360-3. PubMed ID: 2020275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimum Sampling Frequency for Accurate and Reliable Tibial Acceleration Measurements During Rearfoot Strike Running in the Field.
    Aubol KG; Milner CE
    J Appl Biomech; 2023 Jun; 39(3):193-198. PubMed ID: 37001866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing.
    Milner CE; Hawkins JL; Aubol KG
    Med Sci Sports Exerc; 2020 Jun; 52(6):1361-1366. PubMed ID: 31913243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Footwear, Running Speed, and Location on the Validity of Two Commercially Available Inertial Measurement Units During Running.
    Napier C; Willy RW; Hannigan BC; McCann R; Menon C
    Front Sports Act Living; 2021; 3():643385. PubMed ID: 33981991
    [No Abstract]   [Full Text] [Related]  

  • 17. Foot accelerations are larger than tibia accelerations during sprinting when measured with inertial measurement units.
    Glassbrook DJ; Fuller JT; Alderson JA; Doyle TLA
    J Sports Sci; 2020 Feb; 38(3):248-255. PubMed ID: 31726955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tibial impact accelerations in gait of primary school children: The effect of age and speed.
    Tirosh O; Orland G; Eliakim A; Nemet D; Steinberg N
    Gait Posture; 2017 Sep; 57():265-269. PubMed ID: 28683418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in Peak Impact Accelerations Among Foot Strike Patterns in Recreational Runners.
    Napier C; Fridman L; Blazey P; Tran N; Michie TV; Schneeberg A
    Front Sports Act Living; 2022; 4():802019. PubMed ID: 35308593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tibial acceleration and shock attenuation while running over different surfaces in a trail environment.
    Garcia MC; Gust G; Bazett-Jones DM
    J Sci Med Sport; 2021 Nov; 24(11):1161-1165. PubMed ID: 33766445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.